메뉴 건너뛰기




Volumn 21, Issue 6, 2017, Pages 1633-1643

DeepPap: Deep convolutional networks for cervical cell classification

Author keywords

Cell classification; Cervical cytology; deep learning; neural networks; Pap smear

Indexed keywords

CELLS; CLASSIFICATION (OF INFORMATION); CONVOLUTION; CYTOLOGY; DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE SEGMENTATION; NEURAL NETWORKS; TEXTURES;

EID: 85035807487     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2705583     Document Type: Article
Times cited : (405)

References (56)
  • 1
    • 30444459961 scopus 로고    scopus 로고
    • Effect of study design, and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review
    • E. Davey, et al., "Effect of study design, and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review," Lancet, vol. 367, no. 9505, pp. 122-132, 2006
    • (2006) Lancet , vol.367 , Issue.9505 , pp. 122-132
    • Davey, E.1
  • 2
    • 84860818533 scopus 로고    scopus 로고
    • American cancer society, American society for colposcopy, and cervical pathology, and American society for clinical pathology screening guidelines for the prevention, and early detection of cervical cancer
    • D. Saslow, et al., "American cancer society, american society for colposcopy, and cervical pathology, and american society for clinical pathology screening guidelines for the prevention, and early detection of cervical cancer," CA, Cancer J. Clinicians, vol. 62, no. 3, pp. 147-172, 2012
    • (2012) CA, Cancer J. Clinicians , vol.62 , Issue.3 , pp. 147-172
    • Saslow, D.1
  • 3
    • 0030005704 scopus 로고    scopus 로고
    • Automated screening of cervical cytology specimens
    • G. G. Birdsong, "Automated screening of cervical cytology specimens," Human Pathol., vol. 27, no. 5, pp. 468-481, 1996
    • (1996) Human Pathol , vol.27 , Issue.5 , pp. 468-481
    • Birdsong, G.G.1
  • 4
    • 78650710523 scopus 로고    scopus 로고
    • Automation-assisted versus manual reading of cervical cytology (MAVARIC): A randomised controlled trial
    • H. C. Kitchener, et al., "Automation-assisted versus manual reading of cervical cytology (MAVARIC): A randomised controlled trial," Lancet Oncol., vol. 12, no. 1, pp. 56-64, 2011
    • (2011) Lancet Oncol , vol.12 , Issue.1 , pp. 56-64
    • Kitchener, H.C.1
  • 5
    • 84897509705 scopus 로고    scopus 로고
    • Screening for cervical cancer using automated analysis of pap-smears
    • E. Bengtsson, and P. Malm, "Screening for cervical cancer using automated analysis of pap-smears," Comput.Math. Method Med., vol. 2014, pp. 1-12, 2014
    • (2014) Comput. Math. Method Med , vol.2014 , pp. 1-12
    • Bengtsson, E.1    Malm, P.2
  • 6
    • 84894026203 scopus 로고    scopus 로고
    • Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin, and eosin staining
    • L. Zhang, et al., "Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin, and eosin staining," Cytom. Part A, vol. 85, no. 3, pp. 214-230, 2014
    • (2014) Cytom. Part A , vol.85 , Issue.3 , pp. 214-230
    • Zhang, L.1
  • 7
    • 84864290039 scopus 로고    scopus 로고
    • Unsupervised segmentation, and classification of cervical cell images
    • A. Gençtav, S. Aksoy, and S. Önder, "Unsupervised segmentation, and classification of cervical cell images," Pattern Recognit., vol. 45, no. 12, pp. 4151-4168, 2012
    • (2012) Pattern Recognit , vol.45 , Issue.12 , pp. 4151-4168
    • Gençtav, A.1    Aksoy, S.2    Önder, S.3
  • 8
    • 84867839682 scopus 로고    scopus 로고
    • Overlapping cell nuclei segmentation using a spatially adaptive active physical model
    • Nov
    • M. E. Plissiti, and C. Nikou, "Overlapping cell nuclei segmentation using a spatially adaptive active physical model," IEEE Trans. Image Process., vol. 21, no. 11, pp. 4568-4580, Nov. 2012
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.11 , pp. 4568-4580
    • Plissiti, M.E.1    Nikou, C.2
  • 9
    • 84892390921 scopus 로고    scopus 로고
    • Semi-automatic segmentation, and classification of pap smear cells
    • Jan
    • Y.-F. Chen, et al., "Semi-automatic segmentation, and classification of pap smear cells," IEEE J. Biomed. Health Informat., vol. 18, no. 1, pp. 94-108, Jan. 2014
    • (2014) IEEE J. Biomed. Health Informat , vol.18 , Issue.1 , pp. 94-108
    • Chen, Y.-F.1
  • 10
    • 84902087379 scopus 로고    scopus 로고
    • Segmentation of cytoplasm, and nuclei of abnormal cells in cervical cytology using global, and local graph cuts
    • L. Zhang, et al., "Segmentation of cytoplasm, and nuclei of abnormal cells in cervical cytology using global, and local graph cuts," Comput. Med. Imag. Graph., vol. 38, no. 5, pp. 369-380, 2014
    • (2014) Comput. Med. Imag. Graph , vol.38 , Issue.5 , pp. 369-380
    • Zhang, L.1
  • 11
    • 84892818282 scopus 로고    scopus 로고
    • Automatic cervical cell segmentation, and classification in pap smears
    • T. Chankong, N. Theera-Umpon, and S. Auephanwiriyakul, "Automatic cervical cell segmentation, and classification in pap smears," Comput. Methods Programs Biomed., vol. 113, no. 2, pp. 539-556, 2014
    • (2014) Comput. Methods Programs Biomed , vol.113 , Issue.2 , pp. 539-556
    • Chankong, T.1    Theera-Umpon, N.2    Auephanwiriyakul, S.3
  • 12
    • 84950238277 scopus 로고    scopus 로고
    • Accurate segmentation of cervical cytoplasm, and nuclei based on multi-scale convolutional network, and graph partitioning
    • Oct
    • Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, "Accurate segmentation of cervical cytoplasm, and nuclei based on multi-scale convolutional network, and graph partitioning," IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2421-2433, Oct. 2015
    • (2015) IEEE Trans. Biomed. Eng , vol.62 , Issue.10 , pp. 2421-2433
    • Song, Y.1    Zhang, L.2    Chen, S.3    Ni, D.4    Lei, B.5    Wang, T.6
  • 13
    • 85015719304 scopus 로고    scopus 로고
    • Evaluation of three algorithms for the segmentation of overlapping cervical cells
    • Mar
    • Z. Lu, et al., "Evaluation of three algorithms for the segmentation of overlapping cervical cells," IEEE J. Biomed. Health Informat., vol. 21, no. 2, pp. 441-450, Mar. 2017
    • (2017) IEEE J. Biomed. Health Informat , vol.21 , Issue.2 , pp. 441-450
    • Lu, Z.1
  • 15
    • 85023189143 scopus 로고    scopus 로고
    • Combining fully convolutional networks, and graph-based approach for automated segmentation of cervical cell nuclei
    • L. Zhang, M. Sonka, L. Lu, R. M. Summers, and J. Yao, "Combining fully convolutional networks, and graph-based approach for automated segmentation of cervical cell nuclei," in Proc. 2017 IEEE 14th Int. Symp. Biomed. Imag., 2017
    • (2017) Proc. 2017 IEEE 14th Int. Symp. Biomed. Imag
    • Zhang, L.1    Sonka, M.2    Lu, L.3    Summers, R.M.4    Yao, J.5
  • 16
    • 41649100110 scopus 로고    scopus 로고
    • M. S. Thesis, Tech. Univ. Denmark, Kongens Lyngby, Denmark
    • E. Martin, "Pap-smear classification,"M. S. Thesis, Tech. Univ. Denmark, Kongens Lyngby, Denmark, 2003
    • (2003) Pap-smear Classification
    • Martin, E.1
  • 17
    • 44349182950 scopus 로고    scopus 로고
    • Pap-smear benchmark data for pattern classification
    • Online]. Available
    • J. Jantzen, J. Norup, G. Dounias, and B. Bjerregaard, "Pap-smear benchmark data for pattern classification," Nature Inspired Smart Inf. Syst., pp. 1-9, 2005. [Online]. Available: http://orbit.dtu.dk/en/publications/papsmear-benchmark-data-for-pattern-classification(2308e608-62e6-47ee-8ec8-828ba479df0a)/export.html
    • (2005) Nature Inspired Smart Inf. Syst , pp. 1-9
    • Jantzen, J.1    Norup, J.2    Dounias, G.3    Bjerregaard, B.4
  • 18
    • 48749115050 scopus 로고    scopus 로고
    • Particle swarm optimization for pap-smear diagnosis
    • Y. Marinakis, M. Marinaki, and G. Dounias, "Particle swarm optimization for pap-smear diagnosis," Expert Syst. Appl., vol. 35, no. 4, pp. 1645-1656, 2008
    • (2008) Expert Syst. Appl , vol.35 , Issue.4 , pp. 1645-1656
    • Marinakis, Y.1    Marinaki, M.2    Dounias, G.3
  • 19
    • 58249101395 scopus 로고    scopus 로고
    • Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection, and nearest neighbor classification
    • Y. Marinakis, G. Dounias, and J. Jantzen, "Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection, and nearest neighbor classification," Comput. Biol. Med., vol. 39, no. 1, pp. 69-78, 2009
    • (2009) Comput. Biol. Med , vol.39 , Issue.1 , pp. 69-78
    • Marinakis, Y.1    Dounias, G.2    Jantzen, J.3
  • 20
    • 84971265992 scopus 로고    scopus 로고
    • On the importance of nucleus features in the classification of cervical cells in pap smear images
    • M. E. Plissiti, and C. Nikou, "On the importance of nucleus features in the classification of cervical cells in pap smear images," in Proc. Int.Workshop Pattern Recognit. Health Anal., 2012, p. 11
    • Proc. Int.Workshop Pattern Recognit. Health Anal , vol.2012 , pp. 11
    • Plissiti, M.E.1    Nikou, C.2
  • 22
    • 77953363893 scopus 로고    scopus 로고
    • Local binary patterns variants as texture descriptors for medical image analysis
    • L. Nanni, A. Lumini, and S. Brahnam, "Local binary patterns variants as texture descriptors for medical image analysis," Artif. Intell. Med., vol. 49, no. 2, pp. 117-125, 2010
    • (2010) Artif. Intell. Med , vol.49 , Issue.2 , pp. 117-125
    • Nanni, L.1    Lumini, A.2    Brahnam, S.3
  • 23
    • 84861837974 scopus 로고    scopus 로고
    • Discriminative features for texture description
    • Y. Guo, G. Zhao, and M. PietikaInen, "Discriminative features for texture description," Pattern Recognit., vol. 45, no. 10, pp. 3834-3843, 2012
    • (2012) Pattern Recognit , vol.45 , Issue.10 , pp. 3834-3843
    • Guo, Y.1    Zhao, G.2    PietikaInen, M.3
  • 24
    • 84891882107 scopus 로고    scopus 로고
    • A framework for diagnosing cervical cancer disease based on feedforward MLP neural network, and thinPrep histopathological cell image features
    • B. Sokouti, S. Haghipour, and A. D. Tabrizi, "A framework for diagnosing cervical cancer disease based on feedforward MLP neural network, and thinPrep histopathological cell image features," Neural Comput. Appl., vol. 24, no. 1, pp. 221-232, 2014
    • (2014) Neural Comput. Appl , vol.24 , Issue.1 , pp. 221-232
    • Sokouti, B.1    Haghipour, S.2    Tabrizi, A.D.3
  • 26
    • 84958183949 scopus 로고    scopus 로고
    • Automatic screening of cervical cells using block image processing
    • Online]. Available
    • M. Zhao, A. Wu, J. Song, X. Sun, and N. Dong, "Automatic screening of cervical cells using block image processing," Biomed. Eng. Online, vol. 15, no. 1, 2016. [Online]. Available: https://biomedical-engineeringonline. biomedcentral.com/articles/10.1186/s12938-016-0131-z
    • (2016) Biomed. Eng. Online , vol.15 , Issue.1
    • Zhao, M.1    Wu, A.2    Song, J.3    Sun, X.4    Dong, N.5
  • 28
    • 67649447244 scopus 로고    scopus 로고
    • Role of automation in cervical cytology
    • M. Desai, "Role of automation in cervical cytology," Diagnostic Histopathol., vol. 15, no. 7, pp. 323-329, 2009
    • (2009) Diagnostic Histopathol , vol.15 , Issue.7 , pp. 323-329
    • Desai, M.1
  • 29
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review, and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review, and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 30
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 31
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun, et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989
    • (1989) Neural Comput , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 33
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview, and future promise of an exciting new technique
    • May
    • H. Greenspan, B. Van Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview, and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, May 2016
    • (2016) IEEE Trans. Med. Imag , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 34
    • 84978969270 scopus 로고    scopus 로고
    • Progress in fully automated abdominal CT interpretation
    • R. M. Summers, "Progress in fully automated abdominal CT interpretation," Amer. J. Roentgenol., vol. 207, no. 1, pp. 67-79, 2016
    • (2016) Amer. J. Roentgenol , vol.207 , Issue.1 , pp. 67-79
    • Summers, R.M.1
  • 35
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics, and transfer learning
    • May
    • H.-C. Shin, et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics, and transfer learning," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016
    • (2016) IEEE Trans. Med. Imag , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.-C.1
  • 36
    • 84969916782 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks, and random view aggregation
    • May
    • H. R. Roth, et al., "Improving computer-aided detection using convolutional neural networks, and random view aggregation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1170-1181, May 2016
    • (2016) IEEE Trans. Med. Imag , vol.35 , Issue.5 , pp. 1170-1181
    • Roth, H.R.1
  • 38
    • 85011656447 scopus 로고    scopus 로고
    • Segmenting retinal blood vessels with deep neural networks
    • Nov
    • P. Liskowski, and K. Krawiec, "Segmenting retinal blood vessels with deep neural networks," IEEE Trans. Med. Imag., vol. 35, no. 11, pp. 2369-2380, Nov. 2016
    • (2016) IEEE Trans. Med. Imag , vol.35 , Issue.11 , pp. 2369-2380
    • Liskowski, P.1    Krawiec, K.2
  • 39
    • 84995468177 scopus 로고    scopus 로고
    • Multi-feature based benchmark for cervical dysplasia classification evaluation
    • T. Xu, et al."Multi-feature based benchmark for cervical dysplasia classification evaluation," Pattern Recognit., vol. 63, pp. 468-475, 2017
    • (2017) Pattern Recognit , vol.63 , pp. 468-475
    • Xu, T.1
  • 41
    • 84875908988 scopus 로고    scopus 로고
    • Multiscale convolutional neural networks for vision-based classification of cells
    • Springer, New York, NY, USA
    • P. Buyssens, A. Elmoataz, and O. Lézoray, "Multiscale convolutional neural networks for vision-based classification of cells," in Proc. Asian Conf. Comput. Vis,. Springer, New York, NY, USA, 2012, pp. 342-352
    • Proc. Asian Conf. Comput. Vis , vol.2012 , pp. 342-352
    • Buyssens, P.1    Elmoataz, A.2    Lézoray, O.3
  • 42
    • 85015719821 scopus 로고    scopus 로고
    • Hep-2 cell image classification with deep convolutional neural networks
    • Mar
    • Z. Gao, L. Wang, L. Zhou, and J. Zhang, "Hep-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health Informat., vol. 21, no. 2, pp. 416-428, Mar. 2017
    • (2017) IEEE J. Biomed. Health Informat , vol.21 , Issue.2 , pp. 416-428
    • Gao, Z.1    Wang, L.2    Zhou, L.3    Zhang, J.4
  • 45
    • 84961595279 scopus 로고    scopus 로고
    • Region-based convolutional networks for accurate object detection, and segmentation
    • Jan
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection, and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2016
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell , vol.38 , Issue.1 , pp. 142-158
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 46
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky, et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015
    • (2015) Int. J. Comput. Vis , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 47
    • 84940970126 scopus 로고    scopus 로고
    • Standard plane localization in fetal ultrasound via domain transferred deep neural networks
    • Sep
    • H. Chen, et al., "Standard plane localization in fetal ultrasound via domain transferred deep neural networks," IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1627-1636, Sep. 2015
    • (2015) IEEE J. Biomed. Health Informat , vol.19 , Issue.5 , pp. 1627-1636
    • Chen, H.1
  • 49
    • 0032209062 scopus 로고    scopus 로고
    • Feature detection with automatic scale selection
    • T. Lindeberg, "Feature detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 79-116, 1998
    • (1998) Int. J. Comput. Vis , vol.30 , Issue.2 , pp. 79-116
    • Lindeberg, T.1
  • 51
    • 84959431409 scopus 로고    scopus 로고
    • An automatic learning-based framework for robust nucleus segmentation
    • Feb
    • F. Xing, Y. Xie, and L. Yang, "An automatic learning-based framework for robust nucleus segmentation," IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 550-566, Feb. 2016
    • (2016) IEEE Trans. Med. Imag , vol.35 , Issue.2 , pp. 550-566
    • Xing, F.1    Xie, Y.2    Yang, L.3
  • 52
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep
    • H. He, and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009
    • (2009) IEEE Trans. Knowl. Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 55
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia, et al. "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678
    • Proc. 22nd ACM Int. Conf. Multimedia , vol.2014 , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.