-
1
-
-
30444459961
-
Effect of study design, and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review
-
E. Davey, et al., "Effect of study design, and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review," Lancet, vol. 367, no. 9505, pp. 122-132, 2006
-
(2006)
Lancet
, vol.367
, Issue.9505
, pp. 122-132
-
-
Davey, E.1
-
2
-
-
84860818533
-
American cancer society, American society for colposcopy, and cervical pathology, and American society for clinical pathology screening guidelines for the prevention, and early detection of cervical cancer
-
D. Saslow, et al., "American cancer society, american society for colposcopy, and cervical pathology, and american society for clinical pathology screening guidelines for the prevention, and early detection of cervical cancer," CA, Cancer J. Clinicians, vol. 62, no. 3, pp. 147-172, 2012
-
(2012)
CA, Cancer J. Clinicians
, vol.62
, Issue.3
, pp. 147-172
-
-
Saslow, D.1
-
3
-
-
0030005704
-
Automated screening of cervical cytology specimens
-
G. G. Birdsong, "Automated screening of cervical cytology specimens," Human Pathol., vol. 27, no. 5, pp. 468-481, 1996
-
(1996)
Human Pathol
, vol.27
, Issue.5
, pp. 468-481
-
-
Birdsong, G.G.1
-
4
-
-
78650710523
-
Automation-assisted versus manual reading of cervical cytology (MAVARIC): A randomised controlled trial
-
H. C. Kitchener, et al., "Automation-assisted versus manual reading of cervical cytology (MAVARIC): A randomised controlled trial," Lancet Oncol., vol. 12, no. 1, pp. 56-64, 2011
-
(2011)
Lancet Oncol
, vol.12
, Issue.1
, pp. 56-64
-
-
Kitchener, H.C.1
-
5
-
-
84897509705
-
Screening for cervical cancer using automated analysis of pap-smears
-
E. Bengtsson, and P. Malm, "Screening for cervical cancer using automated analysis of pap-smears," Comput.Math. Method Med., vol. 2014, pp. 1-12, 2014
-
(2014)
Comput. Math. Method Med
, vol.2014
, pp. 1-12
-
-
Bengtsson, E.1
Malm, P.2
-
6
-
-
84894026203
-
Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin, and eosin staining
-
L. Zhang, et al., "Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin, and eosin staining," Cytom. Part A, vol. 85, no. 3, pp. 214-230, 2014
-
(2014)
Cytom. Part A
, vol.85
, Issue.3
, pp. 214-230
-
-
Zhang, L.1
-
7
-
-
84864290039
-
Unsupervised segmentation, and classification of cervical cell images
-
A. Gençtav, S. Aksoy, and S. Önder, "Unsupervised segmentation, and classification of cervical cell images," Pattern Recognit., vol. 45, no. 12, pp. 4151-4168, 2012
-
(2012)
Pattern Recognit
, vol.45
, Issue.12
, pp. 4151-4168
-
-
Gençtav, A.1
Aksoy, S.2
Önder, S.3
-
8
-
-
84867839682
-
Overlapping cell nuclei segmentation using a spatially adaptive active physical model
-
Nov
-
M. E. Plissiti, and C. Nikou, "Overlapping cell nuclei segmentation using a spatially adaptive active physical model," IEEE Trans. Image Process., vol. 21, no. 11, pp. 4568-4580, Nov. 2012
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.11
, pp. 4568-4580
-
-
Plissiti, M.E.1
Nikou, C.2
-
9
-
-
84892390921
-
Semi-automatic segmentation, and classification of pap smear cells
-
Jan
-
Y.-F. Chen, et al., "Semi-automatic segmentation, and classification of pap smear cells," IEEE J. Biomed. Health Informat., vol. 18, no. 1, pp. 94-108, Jan. 2014
-
(2014)
IEEE J. Biomed. Health Informat
, vol.18
, Issue.1
, pp. 94-108
-
-
Chen, Y.-F.1
-
10
-
-
84902087379
-
Segmentation of cytoplasm, and nuclei of abnormal cells in cervical cytology using global, and local graph cuts
-
L. Zhang, et al., "Segmentation of cytoplasm, and nuclei of abnormal cells in cervical cytology using global, and local graph cuts," Comput. Med. Imag. Graph., vol. 38, no. 5, pp. 369-380, 2014
-
(2014)
Comput. Med. Imag. Graph
, vol.38
, Issue.5
, pp. 369-380
-
-
Zhang, L.1
-
11
-
-
84892818282
-
Automatic cervical cell segmentation, and classification in pap smears
-
T. Chankong, N. Theera-Umpon, and S. Auephanwiriyakul, "Automatic cervical cell segmentation, and classification in pap smears," Comput. Methods Programs Biomed., vol. 113, no. 2, pp. 539-556, 2014
-
(2014)
Comput. Methods Programs Biomed
, vol.113
, Issue.2
, pp. 539-556
-
-
Chankong, T.1
Theera-Umpon, N.2
Auephanwiriyakul, S.3
-
12
-
-
84950238277
-
Accurate segmentation of cervical cytoplasm, and nuclei based on multi-scale convolutional network, and graph partitioning
-
Oct
-
Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, "Accurate segmentation of cervical cytoplasm, and nuclei based on multi-scale convolutional network, and graph partitioning," IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2421-2433, Oct. 2015
-
(2015)
IEEE Trans. Biomed. Eng
, vol.62
, Issue.10
, pp. 2421-2433
-
-
Song, Y.1
Zhang, L.2
Chen, S.3
Ni, D.4
Lei, B.5
Wang, T.6
-
13
-
-
85015719304
-
Evaluation of three algorithms for the segmentation of overlapping cervical cells
-
Mar
-
Z. Lu, et al., "Evaluation of three algorithms for the segmentation of overlapping cervical cells," IEEE J. Biomed. Health Informat., vol. 21, no. 2, pp. 441-450, Mar. 2017
-
(2017)
IEEE J. Biomed. Health Informat
, vol.21
, Issue.2
, pp. 441-450
-
-
Lu, Z.1
-
14
-
-
85013103938
-
Graphbased segmentation of abnormal nuclei in cervical cytology
-
L. Zhang, H. Kong, S. Liu, T. Wang, S. Chen, and M. Sonka, "Graphbased segmentation of abnormal nuclei in cervical cytology," Comput. Med. Imag. Graph., vol. 56, pp. 38-48, 2017
-
(2017)
Comput. Med. Imag. Graph
, vol.56
, pp. 38-48
-
-
Zhang, L.1
Kong, H.2
Liu, S.3
Wang, T.4
Chen, S.5
Sonka, M.6
-
15
-
-
85023189143
-
Combining fully convolutional networks, and graph-based approach for automated segmentation of cervical cell nuclei
-
L. Zhang, M. Sonka, L. Lu, R. M. Summers, and J. Yao, "Combining fully convolutional networks, and graph-based approach for automated segmentation of cervical cell nuclei," in Proc. 2017 IEEE 14th Int. Symp. Biomed. Imag., 2017
-
(2017)
Proc. 2017 IEEE 14th Int. Symp. Biomed. Imag
-
-
Zhang, L.1
Sonka, M.2
Lu, L.3
Summers, R.M.4
Yao, J.5
-
16
-
-
41649100110
-
-
M. S. Thesis, Tech. Univ. Denmark, Kongens Lyngby, Denmark
-
E. Martin, "Pap-smear classification,"M. S. Thesis, Tech. Univ. Denmark, Kongens Lyngby, Denmark, 2003
-
(2003)
Pap-smear Classification
-
-
Martin, E.1
-
17
-
-
44349182950
-
Pap-smear benchmark data for pattern classification
-
Online]. Available
-
J. Jantzen, J. Norup, G. Dounias, and B. Bjerregaard, "Pap-smear benchmark data for pattern classification," Nature Inspired Smart Inf. Syst., pp. 1-9, 2005. [Online]. Available: http://orbit.dtu.dk/en/publications/papsmear-benchmark-data-for-pattern-classification(2308e608-62e6-47ee-8ec8-828ba479df0a)/export.html
-
(2005)
Nature Inspired Smart Inf. Syst
, pp. 1-9
-
-
Jantzen, J.1
Norup, J.2
Dounias, G.3
Bjerregaard, B.4
-
18
-
-
48749115050
-
Particle swarm optimization for pap-smear diagnosis
-
Y. Marinakis, M. Marinaki, and G. Dounias, "Particle swarm optimization for pap-smear diagnosis," Expert Syst. Appl., vol. 35, no. 4, pp. 1645-1656, 2008
-
(2008)
Expert Syst. Appl
, vol.35
, Issue.4
, pp. 1645-1656
-
-
Marinakis, Y.1
Marinaki, M.2
Dounias, G.3
-
19
-
-
58249101395
-
Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection, and nearest neighbor classification
-
Y. Marinakis, G. Dounias, and J. Jantzen, "Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection, and nearest neighbor classification," Comput. Biol. Med., vol. 39, no. 1, pp. 69-78, 2009
-
(2009)
Comput. Biol. Med
, vol.39
, Issue.1
, pp. 69-78
-
-
Marinakis, Y.1
Dounias, G.2
Jantzen, J.3
-
20
-
-
84971265992
-
On the importance of nucleus features in the classification of cervical cells in pap smear images
-
M. E. Plissiti, and C. Nikou, "On the importance of nucleus features in the classification of cervical cells in pap smear images," in Proc. Int.Workshop Pattern Recognit. Health Anal., 2012, p. 11
-
Proc. Int.Workshop Pattern Recognit. Health Anal
, vol.2012
, pp. 11
-
-
Plissiti, M.E.1
Nikou, C.2
-
21
-
-
84994045082
-
Automated classification of pap smear images to detect cervical dysplasia
-
K. Bora, M. Chowdhury, L. B. Mahanta, M. K. Kundu, and A. K. Das, "Automated classification of pap smear images to detect cervical dysplasia," Comput. Methods Programs Biomed., vol. 138, pp. 31-47, 2017
-
(2017)
Comput. Methods Programs Biomed
, vol.138
, pp. 31-47
-
-
Bora, K.1
Chowdhury, M.2
Mahanta, L.B.3
Kundu, M.K.4
Das, A.K.5
-
22
-
-
77953363893
-
Local binary patterns variants as texture descriptors for medical image analysis
-
L. Nanni, A. Lumini, and S. Brahnam, "Local binary patterns variants as texture descriptors for medical image analysis," Artif. Intell. Med., vol. 49, no. 2, pp. 117-125, 2010
-
(2010)
Artif. Intell. Med
, vol.49
, Issue.2
, pp. 117-125
-
-
Nanni, L.1
Lumini, A.2
Brahnam, S.3
-
23
-
-
84861837974
-
Discriminative features for texture description
-
Y. Guo, G. Zhao, and M. PietikaInen, "Discriminative features for texture description," Pattern Recognit., vol. 45, no. 10, pp. 3834-3843, 2012
-
(2012)
Pattern Recognit
, vol.45
, Issue.10
, pp. 3834-3843
-
-
Guo, Y.1
Zhao, G.2
PietikaInen, M.3
-
24
-
-
84891882107
-
A framework for diagnosing cervical cancer disease based on feedforward MLP neural network, and thinPrep histopathological cell image features
-
B. Sokouti, S. Haghipour, and A. D. Tabrizi, "A framework for diagnosing cervical cancer disease based on feedforward MLP neural network, and thinPrep histopathological cell image features," Neural Comput. Appl., vol. 24, no. 1, pp. 221-232, 2014
-
(2014)
Neural Comput. Appl
, vol.24
, Issue.1
, pp. 221-232
-
-
Sokouti, B.1
Haghipour, S.2
Tabrizi, A.D.3
-
25
-
-
20344379432
-
Cervical cancer detection using SVM based feature screening
-
Springer, New York, NY, USA
-
J. Zhang, and Y. Liu, "Cervical cancer detection using svm based feature screening," in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, Springer, New York, NY, USA, 2004, pp. 873-880
-
(2004)
Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention
, pp. 873-880
-
-
Zhang, J.1
Liu, Y.2
-
26
-
-
84958183949
-
Automatic screening of cervical cells using block image processing
-
Online]. Available
-
M. Zhao, A. Wu, J. Song, X. Sun, and N. Dong, "Automatic screening of cervical cells using block image processing," Biomed. Eng. Online, vol. 15, no. 1, 2016. [Online]. Available: https://biomedical-engineeringonline. biomedcentral.com/articles/10.1186/s12938-016-0131-z
-
(2016)
Biomed. Eng. Online
, vol.15
, Issue.1
-
-
Zhao, M.1
Wu, A.2
Song, J.3
Sun, X.4
Dong, N.5
-
27
-
-
6344276055
-
-
New York, NY, USA Springer Science & Business Media
-
D. Solomon, and R. Nayar, The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria, and Explanatory Notes. New York, NY, USA: Springer Science & Business Media, 2004
-
(2004)
The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria, and Explanatory Notes
-
-
Solomon, D.1
Nayar, R.2
-
28
-
-
67649447244
-
Role of automation in cervical cytology
-
M. Desai, "Role of automation in cervical cytology," Diagnostic Histopathol., vol. 15, no. 7, pp. 323-329, 2009
-
(2009)
Diagnostic Histopathol
, vol.15
, Issue.7
, pp. 323-329
-
-
Desai, M.1
-
29
-
-
84879854889
-
Representation learning: A review, and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review, and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
30
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
31
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989
-
(1989)
Neural Comput
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
-
32
-
-
84876231242
-
Image net classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105
-
Proc. Int. Conf. Adv. Neural Inf. Process. Syst
, vol.2012
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
33
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview, and future promise of an exciting new technique
-
May
-
H. Greenspan, B. Van Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview, and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, May 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
34
-
-
84978969270
-
Progress in fully automated abdominal CT interpretation
-
R. M. Summers, "Progress in fully automated abdominal CT interpretation," Amer. J. Roentgenol., vol. 207, no. 1, pp. 67-79, 2016
-
(2016)
Amer. J. Roentgenol
, vol.207
, Issue.1
, pp. 67-79
-
-
Summers, R.M.1
-
35
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics, and transfer learning
-
May
-
H.-C. Shin, et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics, and transfer learning," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.-C.1
-
36
-
-
84969916782
-
Improving computer-aided detection using convolutional neural networks, and random view aggregation
-
May
-
H. R. Roth, et al., "Improving computer-aided detection using convolutional neural networks, and random view aggregation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1170-1181, May 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.5
, pp. 1170-1181
-
-
Roth, H.R.1
-
37
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
May
-
P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De Vries, M. J. Benders, and I. Išgum, "Automatic segmentation of MR brain images with a convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1252-1261, May 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.5
, pp. 1252-1261
-
-
Moeskops, P.1
Viergever, M.A.2
Mendrik, A.M.3
De Vries, L.S.4
Benders, M.J.5
Išgum, I.6
-
38
-
-
85011656447
-
Segmenting retinal blood vessels with deep neural networks
-
Nov
-
P. Liskowski, and K. Krawiec, "Segmenting retinal blood vessels with deep neural networks," IEEE Trans. Med. Imag., vol. 35, no. 11, pp. 2369-2380, Nov. 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.11
, pp. 2369-2380
-
-
Liskowski, P.1
Krawiec, K.2
-
39
-
-
84995468177
-
Multi-feature based benchmark for cervical dysplasia classification evaluation
-
T. Xu, et al."Multi-feature based benchmark for cervical dysplasia classification evaluation," Pattern Recognit., vol. 63, pp. 468-475, 2017
-
(2017)
Pattern Recognit
, vol.63
, pp. 468-475
-
-
Xu, T.1
-
40
-
-
84996561744
-
Multimodal deep learning for cervical dysplasia diagnosis
-
Springer, New York, NY, USA
-
T. Xu, H. Zhang, X. Huang, S. Zhang, and D. N. Metaxas, "Multimodal deep learning for cervical dysplasia diagnosis," in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, Springer, New York, NY, USA, 2016, pp. 115-123
-
Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention
, vol.2016
, pp. 115-123
-
-
Xu, T.1
Zhang, H.2
Huang, X.3
Zhang, S.4
Metaxas, D.N.5
-
41
-
-
84875908988
-
Multiscale convolutional neural networks for vision-based classification of cells
-
Springer, New York, NY, USA
-
P. Buyssens, A. Elmoataz, and O. Lézoray, "Multiscale convolutional neural networks for vision-based classification of cells," in Proc. Asian Conf. Comput. Vis,. Springer, New York, NY, USA, 2012, pp. 342-352
-
Proc. Asian Conf. Comput. Vis
, vol.2012
, pp. 342-352
-
-
Buyssens, P.1
Elmoataz, A.2
Lézoray, O.3
-
42
-
-
85015719821
-
Hep-2 cell image classification with deep convolutional neural networks
-
Mar
-
Z. Gao, L. Wang, L. Zhou, and J. Zhang, "Hep-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health Informat., vol. 21, no. 2, pp. 416-428, Mar. 2017
-
(2017)
IEEE J. Biomed. Health Informat
, vol.21
, Issue.2
, pp. 416-428
-
-
Gao, Z.1
Wang, L.2
Zhou, L.3
Zhang, J.4
-
43
-
-
84937508363
-
How transferable are features in deep neural networks?
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?" in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2014, pp. 3320-3328
-
Proc. Int. Conf. Adv. Neural Inf. Process. Syst
, vol.2014
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
44
-
-
84943786510
-
Chest pathology detection using deep learning with non-medical training
-
Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, and H. Greenspan, "Chest pathology detection using deep learning with non-medical training," in Proc. 2015 IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 294-297
-
(2015)
Proc. 2015 IEEE 12th Int. Symp. Biomed. Imag
, pp. 294-297
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Lieberman, S.4
Konen, E.5
Greenspan, H.6
-
45
-
-
84961595279
-
Region-based convolutional networks for accurate object detection, and segmentation
-
Jan
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection, and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2016
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.38
, Issue.1
, pp. 142-158
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
46
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015
-
(2015)
Int. J. Comput. Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
47
-
-
84940970126
-
Standard plane localization in fetal ultrasound via domain transferred deep neural networks
-
Sep
-
H. Chen, et al., "Standard plane localization in fetal ultrasound via domain transferred deep neural networks," IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1627-1636, Sep. 2015
-
(2015)
IEEE J. Biomed. Health Informat
, vol.19
, Issue.5
, pp. 1627-1636
-
-
Chen, H.1
-
48
-
-
84951761386
-
Unregistered multiview mammogram analysis with pre-trained deep learning models
-
Springer, New York, NY, USA
-
G. Carneiro, J. Nascimento, and A. P. Bradley, "Unregistered multiview mammogram analysis with pre-trained deep learning models," in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, Springer, New York, NY, USA, 2015, pp. 652-660
-
Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention
, vol.2015
, pp. 652-660
-
-
Carneiro, G.1
Nascimento, J.2
Bradley, A.P.3
-
49
-
-
0032209062
-
Feature detection with automatic scale selection
-
T. Lindeberg, "Feature detection with automatic scale selection," Int. J. Comput. Vis., vol. 30, no. 2, pp. 79-116, 1998
-
(1998)
Int. J. Comput. Vis
, vol.30
, Issue.2
, pp. 79-116
-
-
Lindeberg, T.1
-
50
-
-
84881160857
-
Selective search for object recognition
-
J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, "Selective search for object recognition," Int. J. Comput. Vis., vol. 104, no. 2, pp. 154-171, 2013
-
(2013)
Int. J. Comput. Vis
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.1
Sande De Van, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
51
-
-
84959431409
-
An automatic learning-based framework for robust nucleus segmentation
-
Feb
-
F. Xing, Y. Xie, and L. Yang, "An automatic learning-based framework for robust nucleus segmentation," IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 550-566, Feb. 2016
-
(2016)
IEEE Trans. Med. Imag
, vol.35
, Issue.2
, pp. 550-566
-
-
Xing, F.1
Xie, Y.2
Yang, L.3
-
52
-
-
68549133155
-
Learning from imbalanced data
-
Sep
-
H. He, and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009
-
(2009)
IEEE Trans. Knowl. Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
53
-
-
84872543023
-
Efficient backprop
-
Springer
-
Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural Networks: Tricks of the Trade. New York, NY, USA: Springer, 2012, pp. 9-48
-
Neural Networks: Tricks of the Trade. New York, NY, USA
, vol.2012
, pp. 9-48
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
54
-
-
84867720412
-
-
arXiv 1207.0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv: 1207.0580, 2012
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
55
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, et al. "Caffe: Convolutional architecture for fast feature embedding," in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678
-
Proc. 22nd ACM Int. Conf. Multimedia
, vol.2014
, pp. 675-678
-
-
Jia, Y.1
-
56
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431-3440
-
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, vol.2015
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
|