-
1
-
-
0003527862
-
World Health Organization
-
Chapter 5.12
-
World Cancer Report 2014. World Health Organization; 2014. p. Chapter 5.12. ISBN: 9283204298.
-
(2014)
-
-
-
3
-
-
0030942854
-
Common problems in Papanicolaou smear interpretation
-
DeMay RM. Common problems in Papanicolaou smear interpretation. Arch Pathol Lab Med. 1997;121(3):229.
-
(1997)
Arch Pathol Lab Med
, vol.121
, Issue.3
, pp. 229
-
-
DeMay, R.M.1
-
4
-
-
0141466494
-
Automatic screening of cytological smears for cancer: the instrumentation
-
Tolles WE, Bostrom RC. Automatic screening of cytological smears for cancer: the instrumentation. Ann N Y Acad Sci. 1956;63(6):1211-8.
-
(1956)
Ann N Y Acad Sci
, vol.63
, Issue.6
, pp. 1211-1218
-
-
Tolles, W.E.1
Bostrom, R.C.2
-
5
-
-
33745242801
-
Performance of the cytoanalyzer in recent clinical trials
-
Spencer CC, Bostrom RC. Performance of the cytoanalyzer in recent clinical trials. J Natl Cancer Inst. 1962;29:267-76.
-
(1962)
J Natl Cancer Inst
, vol.29
, pp. 267-276
-
-
Spencer, C.C.1
Bostrom, R.C.2
-
6
-
-
84958187579
-
-
BD Focal Point 2014. http://www.bd.com/tripath/labs/fpscreening.asp.
-
(2014)
-
-
-
7
-
-
10244260339
-
The FocalPoint system
-
Kardos TF. The FocalPoint system. Cancer Cytopathol. 2004;102(6):334-9.
-
(2004)
Cancer Cytopathol
, vol.102
, Issue.6
, pp. 334-339
-
-
Kardos, T.F.1
-
8
-
-
84958166012
-
Does the ThinPrep imaging system increase the detection of high-risk HPV-positive ASC-US and AGUS? The Women and Infants Hospital experience with over 200,000 cervical cytology cases
-
Ruhul QM, et al. Does the ThinPrep imaging system increase the detection of high-risk HPV-positive ASC-US and AGUS? The Women and Infants Hospital experience with over 200,000 cervical cytology cases. Cytojournal. 2009;6(1):15.
-
(2009)
Cytojournal
, vol.6
, Issue.1
, pp. 15
-
-
Ruhul, Q.M.1
-
9
-
-
84897509705
-
Screening for cervical cancer using automated analysis of PAP-smears
-
Bengtsson E, Malm P. Screening for cervical cancer using automated analysis of PAP-smears. Comput Math Methods Med. 2014;2014:842037. doi: 10.1155/2014/842037.
-
(2014)
Comput Math Methods Med.
, vol.2014
, pp. 842037
-
-
Bengtsson, E.1
Malm, P.2
-
10
-
-
84900449424
-
Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential
-
Irshad H, et al. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng. 2014;7:97-114.
-
(2014)
IEEE Rev Biomed Eng
, vol.7
, pp. 97-114
-
-
Irshad, H.1
-
11
-
-
84864290039
-
Unsupervised segmentation and classification of cervical cell images
-
GençTav A, Aksoy S, Önder S. Unsupervised segmentation and classification of cervical cell images. Pattern Recognit. 2012;45(12):4151-68.
-
(2012)
Pattern Recognit
, vol.45
, Issue.12
, pp. 4151-4168
-
-
GençTav, A.1
Aksoy, S.2
Önder, S.3
-
12
-
-
84902088880
-
A review of automated techniques for cervical cell image analysis and classification
-
Netherlands: Springer
-
Plissiti ME, Nikou C. A review of automated techniques for cervical cell image analysis and classification. Netherlands: Springer; 2013. p. 1-18.
-
(2013)
, pp. 1-18
-
-
Plissiti, M.E.1
Nikou, C.2
-
13
-
-
84864131913
-
Cervical cell classification based exclusively on nucleus features
-
Berlin: Springer
-
Plissiti ME, Nikou C. Cervical cell classification based exclusively on nucleus features. Berlin: Springer; 2012. p. 483-90.
-
(2012)
, pp. 483-490
-
-
Plissiti, M.E.1
Nikou, C.2
-
15
-
-
84891882107
-
A framework for diagnosing cervical cancer disease based on feedforward MLP neural network and ThinPrep histopathological cell image features
-
Sokouti B, Haghipour S, Tabrizi AD. A framework for diagnosing cervical cancer disease based on feedforward MLP neural network and ThinPrep histopathological cell image features. Neural Comput Appl. 2014;24(1):221-32.
-
(2014)
Neural Comput Appl
, vol.24
, Issue.1
, pp. 221-232
-
-
Sokouti, B.1
Haghipour, S.2
Tabrizi, A.D.3
-
16
-
-
84892390921
-
Semi-automatic segmentation and classification of PAP smear cells
-
Chen Y-F, et al. Semi-automatic segmentation and classification of PAP smear cells. IEEE J Biomed Health Inform. 2014;18(1):94-108.
-
(2014)
IEEE J Biomed Health Inform
, vol.18
, Issue.1
, pp. 94-108
-
-
Chen, Y.-F.1
-
17
-
-
83655201320
-
Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake
-
Li K, et al. Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake. Pattern Recognit. 2012;45(4):1255-64.
-
(2012)
Pattern Recognit
, vol.45
, Issue.4
, pp. 1255-1264
-
-
Li, K.1
-
18
-
-
84876790254
-
A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching
-
Chen C, et al. A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching. Cytometry A. 2013;83(5):495-507.
-
(2013)
Cytometry A
, vol.83
, Issue.5
, pp. 495-507
-
-
Chen, C.1
-
20
-
-
78649325561
-
An automated method for segmentation of epithelial cervical cells in images of ThinPrep
-
Harandi NM, et al. An automated method for segmentation of epithelial cervical cells in images of ThinPrep. J Med Syst. 2010;34(6):1043-58.
-
(2010)
J Med Syst
, vol.34
, Issue.6
, pp. 1043-1058
-
-
Harandi, N.M.1
-
21
-
-
84902087379
-
Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts
-
Ling Z, et al. Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts. Comput Med Imaging Graph. 2014;38(5):369-80.
-
(2014)
Comput Med Imaging Graph
, vol.38
, Issue.5
, pp. 369-380
-
-
Ling, Z.1
-
22
-
-
79952464447
-
Automated detection of cell nuclei in PAP smear images using morphological reconstruction and clustering
-
Plissiti ME, Nikou C, Charchanti A. Automated detection of cell nuclei in PAP smear images using morphological reconstruction and clustering. IEEE Trans Inf Technol Biomed. 2011;15(2):233-41.
-
(2011)
IEEE Trans Inf Technol Biomed
, vol.15
, Issue.2
, pp. 233-241
-
-
Plissiti, M.E.1
Nikou, C.2
Charchanti, A.3
-
23
-
-
84964315711
-
Data cluster analysis-based classification of overlapping nuclei in PAP smear samples
-
Guven M, Cengizler C. Data cluster analysis-based classification of overlapping nuclei in PAP smear samples. Biomed Eng Online. 2014;13(1):159.
-
(2014)
Biomed Eng Online
, vol.13
, Issue.1
, pp. 159
-
-
Guven, M.1
Cengizler, C.2
-
24
-
-
77956912165
-
Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation
-
Sertel O, et al. Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng. 2010;57(10):2613-6.
-
(2010)
IEEE Trans Biomed Eng
, vol.57
, Issue.10
, pp. 2613-2616
-
-
Sertel, O.1
-
26
-
-
84872779847
-
Efficient nucleus detector in histopathology images
-
Vink JP, et al. Efficient nucleus detector in histopathology images. J Microsc. 2013;249(2):124-35.
-
(2013)
J Microsc
, vol.249
, Issue.2
, pp. 124-135
-
-
Vink, J.P.1
-
27
-
-
37649021330
-
An automated cervical pre-cancerous diagnostic system
-
Mat-Isa NA, Mashor MY, Othman NH. An automated cervical pre-cancerous diagnostic system. Artif Intell Med. 2008;42(1):1-11.
-
(2008)
Artif Intell Med
, vol.42
, Issue.1
, pp. 1-11
-
-
Mat-Isa, N.A.1
Mashor, M.Y.2
Othman, N.H.3
-
29
-
-
10544230514
-
Experiments on the action of mordants 2. Aluminium-haematein
-
Baker JR. Experiments on the action of mordants 2. Aluminium-haematein. Q J Microsc Sci. 1962;3(64):493-517.
-
(1962)
Q J Microsc Sci
, vol.3
, Issue.64
, pp. 493-517
-
-
Baker, J.R.1
-
30
-
-
84866242356
-
Histochemical uses of haematoxylin-a review
-
Avwioro G. Histochemical uses of haematoxylin-a review. J Pharm Clin Sci (JPCS). 2011;1:24-34.
-
(2011)
J Pharm Clin Sci (JPCS)
, vol.1
, pp. 24-34
-
-
Avwioro, G.1
-
31
-
-
33144466752
-
A texture-based method for modeling the background and detecting moving objects
-
Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell. 2006;28(4):657-62.
-
(2006)
IEEE Trans Pattern Anal Mach Intell
, vol.28
, Issue.4
, pp. 657-662
-
-
Heikkila, M.1
Pietikainen, M.2
-
32
-
-
85042800267
-
Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
-
conference a: computer vision and image processing
-
Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR international conference on pattern recognition, 1994. Vol. 1-conference a: computer vision and image processing, no. 1. 1994.
-
(1994)
Proceedings of the 12th IAPR international conference on pattern recognition, 1994
, vol.1
, Issue.1
-
-
Ojala, T.1
Pietikainen, M.2
Harwood, D.3
-
33
-
-
43449100314
-
Nucleus and cytoplast contour detector of cervical smear image
-
Tsai M-H, et al. Nucleus and cytoplast contour detector of cervical smear image. Pattern Recognit Lett. 2008;29(9):1441-53.
-
(2008)
Pattern Recognit Lett
, vol.29
, Issue.9
, pp. 1441-1453
-
-
Tsai, M.-H.1
-
35
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273-97.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
36
-
-
0036800260
-
Color image analysis of cervical neoplasia using RGB computer color specification
-
Nunobiki O, Sato M, Taniguchi E, et al. Color image analysis of cervical neoplasia using RGB computer color specification. Anal Quant Cytol Histol. 2002;24(5):289-94.
-
(2002)
Anal Quant Cytol Histol.
, vol.24
, Issue.5
, pp. 289-294
-
-
Nunobiki, O.1
Sato, M.2
Taniguchi, E.3
-
39
-
-
84958187582
-
Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF Snake model
-
Guan T, Zhou D, Liu Y. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF Snake model. 2014.
-
(2014)
-
-
Guan, T.1
Zhou, D.2
Liu, Y.3
|