-
1
-
-
84998738921
-
-
WHO, Human papillomavirus and related cancers in the world, in: Summary report, ICO Information Centre on HPV and Cancer, August 2014.
-
[1] WHO, Human papillomavirus and related cancers in the world, in: Summary report, ICO Information Centre on HPV and Cancer, August 2014.
-
-
-
-
2
-
-
84998581767
-
A data driven approach to cervigram image analysis and classification
-
[2] E. Kim, X. Huang, A data driven approach to cervigram image analysis and classification, in: Color Medical Image Analysis, Lecture Notes in Computational Vision and Biomechanics, vol. 6, 2013, pp. 1–13.
-
(2013)
Color Medical Image Analysis, Lecture Notes in Computational Vision and Biomechanics
, vol.6
, pp. 1-13
-
-
Kim, E.1
Huang, X.2
-
3
-
-
16844374245
-
A critical assessment of screening methods for cervical neoplasia
-
[3] Sankaranarayanan, R., Gaffikin, L., Jacob, M., et al. A critical assessment of screening methods for cervical neoplasia. Int. J. Gynecol. Obstet. 89 (2005), 4–12.
-
(2005)
Int. J. Gynecol. Obstet.
, vol.89
, pp. 4-12
-
-
Sankaranarayanan, R.1
Gaffikin, L.2
Jacob, M.3
-
4
-
-
13244283148
-
Assisted primary screening using the automated thinprep imaging system
-
[4] Biscotti, C.V., Dawson, A.E., et al. Assisted primary screening using the automated thinprep imaging system. Am. J. Clin. Pathol. 123:2 (2005), 281–287.
-
(2005)
Am. J. Clin. Pathol.
, vol.123
, Issue.2
, pp. 281-287
-
-
Biscotti, C.V.1
Dawson, A.E.2
-
5
-
-
70449707654
-
The Becton Dickinson focalpoint gs imaging system: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions
-
[5] Wilbur, D.C., Black-Schaffer, W.S., Luff, R.D., et al. The Becton Dickinson focalpoint gs imaging system: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. Am. J. Clin. Pathol. 132:5 (2009), 767–775.
-
(2009)
Am. J. Clin. Pathol.
, vol.132
, Issue.5
, pp. 767-775
-
-
Wilbur, D.C.1
Black-Schaffer, W.S.2
Luff, R.D.3
-
6
-
-
20344379432
-
Cervical cancer detection using svm based feature screening
-
[6] J. Zhang, Y. Liu, Cervical cancer detection using svm based feature screening, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, vol. 3217, 2004, pp. 873–880.
-
(2004)
Medical Image Computing and Computer-Assisted Intervention, MICCAI
, vol.3217
, pp. 873-880
-
-
Zhang, J.1
Liu, Y.2
-
7
-
-
84937543520
-
Multi-modal entity coreference for cervical dysplasia diagnosis
-
[7] Song, D., Kim, E., Huang, X., et al. Multi-modal entity coreference for cervical dysplasia diagnosis. IEEE Trans. Med. Imag. TMI 34:1 (2015), 229–245.
-
(2015)
IEEE Trans. Med. Imag. TMI
, vol.34
, Issue.1
, pp. 229-245
-
-
Song, D.1
Kim, E.2
Huang, X.3
-
8
-
-
35248813945
-
Automated image analysis of uterine cervical images
-
[8] W. Li, J. Gu, D. Ferris, A. Poirson, Automated image analysis of uterine cervical images, in: SPIE Medical Imaging, 2007.
-
(2007)
SPIE Medical Imaging
-
-
Li, W.1
Gu, J.2
Ferris, D.3
Poirson, A.4
-
9
-
-
33745138555
-
Automatic detection of specular reflections in uterine cervix images
-
[9] G. Zimmerman-Moreno, H. Greenspan, Automatic detection of specular reflections in uterine cervix images, in: SPIE Medical Imaging, 2006.
-
(2006)
SPIE Medical Imaging
-
-
Zimmerman-Moreno, G.1
Greenspan, H.2
-
10
-
-
0033688264
-
Classifying cervix tissue patterns with texture analysis
-
[10] Ji, Q., Engel, J., Craine, E., Classifying cervix tissue patterns with texture analysis. Pattern Recognit. 33:9 (2000), 1561–1574.
-
(2000)
Pattern Recognit.
, vol.33
, Issue.9
, pp. 1561-1574
-
-
Ji, Q.1
Engel, J.2
Craine, E.3
-
11
-
-
84901764083
-
Intelligent screening systems for cervical cancer
-
Article ID 810368
-
[11] Jusman, Y., Ng, S., Osman, N., Intelligent screening systems for cervical cancer. Sci. World J., 2014, 2014, 15 Article ID 810368.
-
(2014)
Sci. World J.
, vol.2014
, pp. 15
-
-
Jusman, Y.1
Ng, S.2
Osman, N.3
-
12
-
-
77955202718
-
-
[12] S. Zhang, J. Huang, et al, Discriminative sparse representations for cervigram image segmentation, in: International Symposium on Biomedical Imaging, ISBI, 2010, pp. 133–136.
-
Discriminative sparse representations for cervigram image segmentation, in: International Symposium on Biomedical Imaging, ISBI, 2010
, pp. 133-136
-
-
Zhang, S.1
Huang, J.2
-
13
-
-
0026382864
-
-
[13] J.-J. Lee, J. Hwang, et al., Integration of neural networks and decision tree classifiers for automated cytology screening, in: International Joint Conference on Neural Networks, IJCNN, vol. 1, 1991, pp. 257–262.
-
Integration of neural networks and decision tree classifiers for automated cytology screening, in: International Joint Conference on Neural Networks, IJCNN, vol. 1, 1991
, pp. 257-262
-
-
Lee, J.-J.1
Hwang, J.2
-
14
-
-
0030850686
-
Design and methods of a population-based natural history study of cervical neoplasia in a rural province of costa rica: the guanacaste project
-
[14] Herrero, R., Schiffman, M., Bratti, C., et al. Design and methods of a population-based natural history study of cervical neoplasia in a rural province of costa rica: the guanacaste project. Rev. Panam Salud Publica 1 (1997), 362–375.
-
(1997)
Rev. Panam Salud Publica
, vol.1
, pp. 362-375
-
-
Herrero, R.1
Schiffman, M.2
Bratti, C.3
-
15
-
-
33645644889
-
Digital tools for collecting data from cervigrams for research and training in colposcopy
-
[15] Jeronimo, J., Long, L.R., Neve, L., et al. Digital tools for collecting data from cervigrams for research and training in colposcopy. J. Lower Genital Tract Dis. 10:1 (2006), 16–25.
-
(2006)
J. Lower Genital Tract Dis.
, vol.10
, Issue.1
, pp. 16-25
-
-
Jeronimo, J.1
Long, L.R.2
Neve, L.3
-
16
-
-
84908537903
-
CNN features off-the-shelf: an astounding baseline for recognition
-
[16] A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf: an astounding baseline for recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, 2014, pp. 512–519.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops
, pp. 512-519
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
17
-
-
0029669420
-
A comparative study of texture measures with classification based on feature distributions
-
[17] Ojala, T., Pietikinen, M., Harwood, D., A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29 (1996), 51–59.
-
(1996)
Pattern Recognit.
, vol.29
, pp. 51-59
-
-
Ojala, T.1
Pietikinen, M.2
Harwood, D.3
-
18
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
[18] Ojala, T., Pietikinen, M., Menp, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 24 (2002), 971–987.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell. PAMI
, vol.24
, pp. 971-987
-
-
Ojala, T.1
Pietikinen, M.2
Menp, T.3
-
19
-
-
84966566201
-
Caffe: convolutional architecture for fast feature embedding, arXiv preprint
-
arXiv:1408.5093
-
[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, arXiv preprint arXiv:1408.5093.
-
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
[20] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: 26th Annual Conference on Neural Information Processing Systems, NIPS, 2012.
-
(2012)
26th Annual Conference on Neural Information Processing Systems, NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
73849088741
-
Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation
-
[21] Morra, J.H., Tu, Z., Apostolova, L.G., et al. Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation. IEEE Trans. Med. Imag. TMI 29:1 (2010), 30–43.
-
(2010)
IEEE Trans. Med. Imag. TMI
, vol.29
, Issue.1
, pp. 30-43
-
-
Morra, J.H.1
Tu, Z.2
Apostolova, L.G.3
-
22
-
-
84944073718
-
-
[22] A. Osareh, M. Mirmehdi, et al., Comparative exudate classification using support vector machines and neural networks, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2002, pp. 413–420.
-
Comparative exudate classification using support vector machines and neural networks, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2002
, pp. 413-420
-
-
Osareh, A.1
Mirmehdi, M.2
-
23
-
-
19044383038
-
A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
-
[23] Wei, L., Yang, Y., Nishikawa, R.M., Jiang, Y., A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans. Med. Imag. TMI 24:3 (2005), 371–380.
-
(2005)
IEEE Trans. Med. Imag. TMI
, vol.24
, Issue.3
, pp. 371-380
-
-
Wei, L.1
Yang, Y.2
Nishikawa, R.M.3
Jiang, Y.4
-
24
-
-
84974659871
-
-
[24] S.J. Timoner, P. Golland, R. Kikinis, et al., Performance issues in shape classification, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2002, pp. 355–362.
-
Performance issues in shape classification, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2002
, pp. 355-362
-
-
Timoner, S.J.1
Golland, P.2
Kikinis, R.3
-
25
-
-
84909643973
-
-
[25] D. Alexander, D. Zikic, J. Zhang, et al., Image quality transfer via random forest regression: applications in diffusion mri, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2014, pp. 225–232.
-
Image quality transfer via random forest regression: applications in diffusion mri, in: Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2014
, pp. 225-232
-
-
Alexander, D.1
Zikic, D.2
Zhang, J.3
-
26
-
-
84999002131
-
-
The Elements of Statistical Learning, vol. 2, 2009.
-
[26] T. Hastie, R. Tibshirani, J. Friedman, et al., The Elements of Statistical Learning, vol. 2, 2009.
-
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
27
-
-
84897510233
-
Quickly boosting decision trees pruning underachieving features early
-
[27] R. Appel, T. Fuchs, P. Dollr, P. Perona, Quickly boosting decision trees pruning underachieving features early, in: International Conference on Machine Learning, ICML, vol. 28, 2013, pp. 594–602.
-
(2013)
International Conference on Machine Learning, ICML
, vol.28
, pp. 594-602
-
-
Appel, R.1
Fuchs, T.2
Dollr, P.3
Perona, P.4
-
28
-
-
84998588953
-
-
LIBSVM: A Library for Support Vector Machines 2001.
-
[28] C. Chang, C. Lin, LIBSVM: A Library for Support Vector Machines 2001.
-
-
-
Chang, C.1
Lin, C.2
-
29
-
-
80555140075
-
Scikit-learn: machine learning in python
-
[29] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
-
31
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
[31] Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?. J. Mach. Learn. Res. 15:1 (2014), 3133–3181.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
|