메뉴 건너뛰기




Volumn 49, Issue 2, 2010, Pages 117-125

Local binary patterns variants as texture descriptors for medical image analysis

Author keywords

Image medical analysis; Neonatal pain detection; Pap smear classification; Sub cellular protein localization; Support vector machine; Texture descriptors

Indexed keywords

MEDICAL ANALYSIS; NEONATAL PAIN; PAP-SMEAR CLASSIFICATION; SUB-CELLULAR; SUB-CELLULAR PROTEIN LOCALIZATION; TEXTURE DESCRIPTORS;

EID: 77953363893     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2010.02.006     Document Type: Article
Times cited : (471)

References (45)
  • 2
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni L., Lumini A A reliable method for cell phenotype image classification. Artif Intell Med 2008, 43(2):87-97.
    • (2008) Artif Intell Med , vol.43 , Issue.2 , pp. 87-97
    • Nanni, L.1    Lumini A2
  • 5
    • 34247596883 scopus 로고    scopus 로고
    • Estimation of asymmetry in facial actions for the analysis of motion dysfunction due to paralysis
    • Gunaratne P., Sato Y. Estimation of asymmetry in facial actions for the analysis of motion dysfunction due to paralysis. Int J Image Graph 2003, 3:639-652.
    • (2003) Int J Image Graph , vol.3 , pp. 639-652
    • Gunaratne, P.1    Sato, Y.2
  • 8
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distribution
    • Ojala T., Pietikäinen M., Harwood D. A comparative study of texture measures with classification based on featured distribution. Pattern Recogn 1996, 29(1):51-59.
    • (1996) Pattern Recogn , vol.29 , Issue.1 , pp. 51-59
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 9
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikainen M., Maeenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002, 24(7):971-987.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maeenpaa, T.3
  • 10
    • 34548667906 scopus 로고    scopus 로고
    • RegionBoost learning for 2D+3D based face recognition
    • Nanni L., Lumini A. RegionBoost learning for 2D+3D based face recognition. Pattern Recogn Lett 2007, 28(15):2063-2070.
    • (2007) Pattern Recogn Lett , vol.28 , Issue.15 , pp. 2063-2070
    • Nanni, L.1    Lumini, A.2
  • 12
    • 48149110492 scopus 로고    scopus 로고
    • Local binary patterns for a hybrid fingerprint matcher
    • Nanni L., Lumini A. Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn 2008, 11:3461-3466.
    • (2008) Pattern Recogn , vol.11 , pp. 3461-3466
    • Nanni, L.1    Lumini, A.2
  • 14
    • 38149090988 scopus 로고    scopus 로고
    • Enhanced local texture feature sets for face recognition under difficult lighting conditions
    • Tan X., Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. Analysis and modelling of faces and gestures 2007, 168-182.
    • (2007) Analysis and modelling of faces and gestures , pp. 168-182
    • Tan, X.1    Triggs, B.2
  • 20
    • 54549085366 scopus 로고    scopus 로고
    • Description of interest regions with local binary patterns
    • Heikkilä M., Matti Pietikäinen M., Schmid C. Description of interest regions with local binary patterns. Pattern Recogn 2009, 42(3):425-436.
    • (2009) Pattern Recogn , vol.42 , Issue.3 , pp. 425-436
    • Heikkilä, M.1    Matti Pietikäinen, M.2    Schmid, C.3
  • 21
    • 69949179045 scopus 로고    scopus 로고
    • Local gabor binary patterns based on mutual information for face recognition
    • Zhang W., Shan H., Chen X., Gao W. Local gabor binary patterns based on mutual information for face recognition. Int J Image Graph 2007, 7(4):777-793.
    • (2007) Int J Image Graph , vol.7 , Issue.4 , pp. 777-793
    • Zhang, W.1    Shan, H.2    Chen, X.3    Gao, W.4
  • 24
    • 33644893406 scopus 로고    scopus 로고
    • Machine recognition and representation of neonate facial displays of acute pain
    • Brahnam S., Chuang C.-F., Shih F.Y., Slack M.R. Machine recognition and representation of neonate facial displays of acute pain. Int J Artif Intell Med 2006, 36(3):211-222.
    • (2006) Int J Artif Intell Med , vol.36 , Issue.3 , pp. 211-222
    • Brahnam, S.1    Chuang, C.-F.2    Shih, F.Y.3    Slack, M.R.4
  • 25
    • 34247640819 scopus 로고    scopus 로고
    • Introduction to neonatal facial pain detection using common and advanced face classification techniques
    • Springer-Verlag, New York, J. Lakhmi (Ed.)
    • Brahnam S., Nanni L., Sexton R. Introduction to neonatal facial pain detection using common and advanced face classification techniques. Computational intelligence in healthcare 2007, 225-243. Springer-Verlag, New York. J. Lakhmi (Ed.).
    • (2007) Computational intelligence in healthcare , pp. 225-243
    • Brahnam, S.1    Nanni, L.2    Sexton, R.3
  • 26
    • 0000756286 scopus 로고    scopus 로고
    • Pain assessment in neonates
    • Elsevier, New York, K.J.S. Anand, B.J. Stevens, P.J. McGrath (Eds.)
    • Stevens B., Johnston C., Gibbins S. Pain assessment in neonates. Pain in neonates 2000, 101-134. Elsevier, New York. 2nd revised and enlarged edition. K.J.S. Anand, B.J. Stevens, P.J. McGrath (Eds.).
    • (2000) Pain in neonates , pp. 101-134
    • Stevens, B.1    Johnston, C.2    Gibbins, S.3
  • 28
    • 0345438685 scopus 로고    scopus 로고
    • ROC graphs: notes and practical considerations for researchers, technical report
    • Fawcett T. ROC graphs: notes and practical considerations for researchers, technical report. Palo Alto, USA: HP Laboratories; 2004.
    • (2004) Palo Alto, USA: HP Laboratories
    • Fawcett, T.1
  • 29
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland M.V., Murphy R.F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 2001, 17:1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 31
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland M., Markey M., Murphy R. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 1998, 33:366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.1    Markey, M.2    Murphy, R.3
  • 32
    • 36949037952 scopus 로고    scopus 로고
    • Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization
    • Lin C.C., Tsai Y.-S., Lin Y.-S., Chiu T.-Y., Hsiung C.-C., Lee M.-I., et al. Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization. Bioinformatics 2007, 23(24):3374-3381.
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3374-3381
    • Lin, C.C.1    Tsai, Y.-S.2    Lin, Y.-S.3    Chiu, T.-Y.4    Hsiung, C.-C.5    Lee, M.-I.6
  • 33
    • 0036754439 scopus 로고    scopus 로고
    • Mining knowledge for Hep-2 cell image classification
    • Perner P., Perner H., Muller B. Mining knowledge for Hep-2 cell image classification. Artif Intell Med 2002, 26(1-2):161-173.
    • (2002) Artif Intell Med , vol.26 , Issue.1-2 , pp. 161-173
    • Perner, P.1    Perner, H.2    Muller, B.3
  • 34
    • 0036264252 scopus 로고    scopus 로고
    • Automated recognition of intracellular organelles in confocal microscope images
    • Danckaert A., Gonzalez-Couto E., Bollondi L., Thompson N., Hayes B. Automated recognition of intracellular organelles in confocal microscope images. Traffic 2002, 3:66-73.
    • (2002) Traffic , vol.3 , pp. 66-73
    • Danckaert, A.1    Gonzalez-Couto, E.2    Bollondi, L.3    Thompson, N.4    Hayes, B.5
  • 35
    • 3042565868 scopus 로고    scopus 로고
    • Automatic identification of subcellular phenotypes on human cell arrays
    • Conrad C., Erfle H., Warnat P., Daigle N., Lorch T., Ellenberg J., et al. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res 2004, 14(6):1130-1136.
    • (2004) Genome Res , vol.14 , Issue.6 , pp. 1130-1136
    • Conrad, C.1    Erfle, H.2    Warnat, P.3    Daigle, N.4    Lorch, T.5    Ellenberg, J.6
  • 36
    • 33745948356 scopus 로고    scopus 로고
    • Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics
    • Chen X., Velliste M., Murphy R. Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics. Cytometry 2006, 69(7):631-640.
    • (2006) Cytometry , vol.69 , Issue.7 , pp. 631-640
    • Chen, X.1    Velliste, M.2    Murphy, R.3
  • 37
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high throughput microscopy
    • Glory E., Murphy R. Automated subcellular location determination and high throughput microscopy. Dev Cell 2007, 12:7-16.
    • (2007) Dev Cell , vol.12 , pp. 7-16
    • Glory, E.1    Murphy, R.2
  • 38
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang K., Murphy R. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinf 2004, 5:78.
    • (2004) BMC Bioinf , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.2
  • 40
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira A., Barbotin Y., Jackson C., Merryman T., Srinivasa G., Murphy R.F., et al. A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinf 2007, 8:210.
    • (2007) BMC Bioinf , vol.8 , pp. 210
    • Chebira, A.1    Barbotin, Y.2    Jackson, C.3    Merryman, T.4    Srinivasa, G.5    Murphy, R.F.6
  • 42
    • 48749115050 scopus 로고    scopus 로고
    • Particle swarm optimization for pap-smear diagnosis
    • Marinakis Y., Marinaki M., Dounias G. Particle swarm optimization for pap-smear diagnosis. Expert Syst Appl 2008, 35:1645-1656.
    • (2008) Expert Syst Appl , vol.35 , pp. 1645-1656
    • Marinakis, Y.1    Marinaki, M.2    Dounias, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.