-
1
-
-
85006989762
-
The path towards sustainable energy
-
Chu, S., Cui, Y., Liu, N., The path towards sustainable energy. Nat. Mater. 16 (2017), 16–22.
-
(2017)
Nat. Mater.
, vol.16
, pp. 16-22
-
-
Chu, S.1
Cui, Y.2
Liu, N.3
-
2
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
Chu, S., Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 488 (2012), 294–303.
-
(2012)
Nature
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
3
-
-
85011636035
-
Water-evaporation-induced electricity with nanostructured carbon materials
-
Xue, G., Xu, Y., Ding, T., Li, J., Yin, J., Fei, W., Cao, Y., Yu, J., Yuan, L., Gong, L., et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12 (2017), 317–321.
-
(2017)
Nat. Nanotechnol.
, vol.12
, pp. 317-321
-
-
Xue, G.1
Xu, Y.2
Ding, T.3
Li, J.4
Yin, J.5
Fei, W.6
Cao, Y.7
Yu, J.8
Yuan, L.9
Gong, L.10
-
4
-
-
0346095510
-
Climate change science: adapt, mitigate, or ignore?
-
King, D.A., Climate change science: adapt, mitigate, or ignore?. Science 303 (2004), 176–177.
-
(2004)
Science
, vol.303
, pp. 176-177
-
-
King, D.A.1
-
5
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z.L., Song, J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312 (2006), 242–246.
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
6
-
-
39149112201
-
Microfibre-nanowire hybrid structure for energy scavenging
-
Qin, Y., Wang, X., Wang, Z.L., Microfibre-nanowire hybrid structure for energy scavenging. Nature 451 (2008), 809–813.
-
(2008)
Nature
, vol.451
, pp. 809-813
-
-
Qin, Y.1
Wang, X.2
Wang, Z.L.3
-
7
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
Wang, X., Song, J., Liu, J., Wang, Z.L., Direct-current nanogenerator driven by ultrasonic waves. Science 316 (2007), 102–105.
-
(2007)
Science
, vol.316
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
Wang, Z.L.4
-
8
-
-
77952293658
-
Self-powered nanowire devices
-
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L., Self-powered nanowire devices. Nat. Nanotechnol. 5 (2010), 366–373.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 366-373
-
-
Xu, S.1
Qin, Y.2
Xu, C.3
Wei, Y.4
Yang, R.5
Wang, Z.L.6
-
9
-
-
58149263348
-
Power generation with laterally packaged piezoelectric fine wires
-
Yang, R., Qin, Y., Dai, L., Wang, Z.L., Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4 (2009), 34–39.
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 34-39
-
-
Yang, R.1
Qin, Y.2
Dai, L.3
Wang, Z.L.4
-
10
-
-
35348984409
-
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
-
Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M., Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449 (2007), 885–889.
-
(2007)
Nature
, vol.449
, pp. 885-889
-
-
Tian, B.1
Zheng, X.2
Kempa, T.J.3
Fang, Y.4
Yu, N.5
Yu, G.6
Huang, J.7
Lieber, C.M.8
-
11
-
-
85014259983
-
Towards stable and commercially available perovskite solar cells
-
Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K., Emery, K., Towards stable and commercially available perovskite solar cells. Nat. Energy, 1, 2016, 16152.
-
(2016)
Nat. Energy
, vol.1
, pp. 16152
-
-
Park, N.-G.1
Grätzel, M.2
Miyasaka, T.3
Zhu, K.4
Emery, K.5
-
12
-
-
84954028422
-
A wearable all-solid photovoltaic textile
-
Zhang, N., Chen, J., Huang, Y., Guo, W., Yang, J., Du, J., Fan, X., Tao, C., A wearable all-solid photovoltaic textile. Adv. Mater. 28 (2016), 263–269.
-
(2016)
Adv. Mater.
, vol.28
, pp. 263-269
-
-
Zhang, N.1
Chen, J.2
Huang, Y.3
Guo, W.4
Yang, J.5
Du, J.6
Fan, X.7
Tao, C.8
-
13
-
-
84996435236
-
Efficient organic solar cells processed from hydrocarbon solvents
-
Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W., Yan, H., Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy, 1, 2016, 15027.
-
(2016)
Nat. Energy
, vol.1
, pp. 15027
-
-
Zhao, J.1
Li, Y.2
Yang, G.3
Jiang, K.4
Lin, H.5
Ade, H.6
Ma, W.7
Yan, H.8
-
14
-
-
84969677462
-
Strongly correlated perovskite fuel cells
-
Zhou, Y., Guan, X., Zhou, H., Ramadoss, K., Adam, S., Liu, H., Lee, S., Shi, J., Tsuchiya, M., Fong, D.D., et al. Strongly correlated perovskite fuel cells. Nature 534 (2016), 231–234.
-
(2016)
Nature
, vol.534
, pp. 231-234
-
-
Zhou, Y.1
Guan, X.2
Zhou, H.3
Ramadoss, K.4
Adam, S.5
Liu, H.6
Lee, S.7
Shi, J.8
Tsuchiya, M.9
Fong, D.D.10
-
15
-
-
84982215480
-
A dual-electrolyte based air-breathing regenerative microfluidic fuel cell with 1.76 V open-circuit-voltage and 0.74 V water-splitting voltage
-
Zou, H., Chen, J., Fang, Y., Ding, J., Peng, W., Liu, R., A dual-electrolyte based air-breathing regenerative microfluidic fuel cell with 1.76 V open-circuit-voltage and 0.74 V water-splitting voltage. Nano Energy 27 (2016), 619–626.
-
(2016)
Nano Energy
, vol.27
, pp. 619-626
-
-
Zou, H.1
Chen, J.2
Fang, Y.3
Ding, J.4
Peng, W.5
Liu, R.6
-
16
-
-
85019539914
-
3 solar cells with a ZnO buffer layer
-
3 solar cells with a ZnO buffer layer. Nat. Energy, 2, 2017, 17046.
-
(2017)
Nat. Energy
, vol.2
, pp. 17046
-
-
Wang, L.1
Li, D.-B.2
Li, K.3
Chen, C.4
Deng, H.-X.5
Gao, L.6
Zhao, Y.7
Jiang, F.8
Li, L.9
Huang, F.10
-
17
-
-
85012183379
-
Triboelectric Nanogenerators
-
Springer
-
Wang, Z.L., Lin, L., Chen, J., Niu, S., Zi, Y., Triboelectric Nanogenerators. 2016, Springer http://www.springer.com/la/book/9783319400389.
-
(2016)
-
-
Wang, Z.L.1
Lin, L.2
Chen, J.3
Niu, S.4
Zi, Y.5
-
18
-
-
0342571696
-
Wind energy technology and current status-a review
-
Ackermann, T., Söder, L., Wind energy technology and current status-a review. Renew. Sust. Energ. Rev. 4 (2000), 315–374.
-
(2000)
Renew. Sust. Energ. Rev.
, vol.4
, pp. 315-374
-
-
Ackermann, T.1
Söder, L.2
-
19
-
-
65449180309
-
Nonlinear oscillators for vibration energy harvesting
-
Gammaitoni, L., Neri, I., Vocca, H., Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett., 94, 2009, 164102.
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 164102
-
-
Gammaitoni, L.1
Neri, I.2
Vocca, H.3
-
20
-
-
84873344256
-
A review of the recent research on vibration energy harvesting via bistable systems
-
Harne, R.L., Wang, K.W., A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct., 22, 2013, 023001.
-
(2013)
Smart Mater. Struct.
, vol.22
, pp. 023001
-
-
Harne, R.L.1
Wang, K.W.2
-
21
-
-
84890473811
-
A two-dimensional broadband vibration energy harvester using magnetoelectric transducer
-
Yang, J., Wen, Y., Li, P., Yue, X., Yu, Q., Bai, X., A two-dimensional broadband vibration energy harvester using magnetoelectric transducer. Appl. Phys. Lett., 103, 2013, 243903.
-
(2013)
Appl. Phys. Lett.
, vol.103
, pp. 243903
-
-
Yang, J.1
Wen, Y.2
Li, P.3
Yue, X.4
Yu, Q.5
Bai, X.6
-
22
-
-
84920140682
-
Wearable electrode-free triboelectric generator for harvesting biomechanical energy
-
Cheng, X., Meng, B., Zhang, X., Han, M., Su, Z., Zhang, H., Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy 12 (2015), 19–25.
-
(2015)
Nano Energy
, vol.12
, pp. 19-25
-
-
Cheng, X.1
Meng, B.2
Zhang, X.3
Han, M.4
Su, Z.5
Zhang, H.6
-
23
-
-
85000352199
-
Piezoelectric nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications
-
Datta, A., Choi, Y.S., Chalmers, E., Ou, C., Kar-Narayan, S., Piezoelectric nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Adv. Funct. Mater., 27, 2017, 1604262.
-
(2017)
Adv. Funct. Mater.
, vol.27
, pp. 1604262
-
-
Datta, A.1
Choi, Y.S.2
Chalmers, E.3
Ou, C.4
Kar-Narayan, S.5
-
24
-
-
85019735252
-
Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring
-
Chen, X., Song, Y., Su, Z., Chen, H., Cheng, X., Zhang, J., Han, M., Zhang, H., Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 38 (2017), 43–50.
-
(2017)
Nano Energy
, vol.38
, pp. 43-50
-
-
Chen, X.1
Song, Y.2
Su, Z.3
Chen, H.4
Cheng, X.5
Zhang, J.6
Han, M.7
Zhang, H.8
-
25
-
-
85008403684
-
A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy
-
Wu, C., Liu, R., Wang, J., Zi, Y., Lin, L., Wang, Z.L., A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32 (2017), 287–293.
-
(2017)
Nano Energy
, vol.32
, pp. 287-293
-
-
Wu, C.1
Liu, R.2
Wang, J.3
Zi, Y.4
Lin, L.5
Wang, Z.L.6
-
26
-
-
24644452464
-
Generating electricity while walking with loads
-
Rome, L.C., Flynn, L., Goldman, E.M., Yoo, T.D., Generating electricity while walking with loads. Science 309 (2005), 1725–1728.
-
(2005)
Science
, vol.309
, pp. 1725-1728
-
-
Rome, L.C.1
Flynn, L.2
Goldman, E.M.3
Yoo, T.D.4
-
27
-
-
84861740562
-
A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance
-
Bai, X., Wen, Y., Yang, J., Li, P., Qiu, J., Zhu, Y., A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys., 111, 2012, 07A938.
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 07A938
-
-
Bai, X.1
Wen, Y.2
Yang, J.3
Li, P.4
Qiu, J.5
Zhu, Y.6
-
28
-
-
85007016222
-
Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator
-
Lin, Z., Chen, J., Li, X., Li, J., Liu, J., Awais, Q., Yang, J., Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator. Appl. Phys. Lett., 109, 2016, 253903.
-
(2016)
Appl. Phys. Lett.
, vol.109
, pp. 253903
-
-
Lin, Z.1
Chen, J.2
Li, X.3
Li, J.4
Liu, J.5
Awais, Q.6
Yang, J.7
-
29
-
-
4544299700
-
MEMS electrostatic micropower generator for low frequency operation
-
Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S., Green, T.C., MEMS electrostatic micropower generator for low frequency operation. Sensor. Actuat. A Phys. 115 (2004), 523–529.
-
(2004)
Sensor. Actuat. A Phys.
, vol.115
, pp. 523-529
-
-
Mitcheson, P.D.1
Miao, P.2
Stark, B.H.3
Yeatman, E.M.4
Holmes, A.S.5
Green, T.C.6
-
30
-
-
84863116422
-
Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale
-
Wang, X., Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1 (2012), 13–24.
-
(2012)
Nano Energy
, vol.1
, pp. 13-24
-
-
Wang, X.1
-
31
-
-
84880317348
-
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
-
Xu, S., Hansen, B.J., Wang, Z.L., Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun., 1, 2010, 93.
-
(2010)
Nat. Commun.
, vol.1
, pp. 93
-
-
Xu, S.1
Hansen, B.J.2
Wang, Z.L.3
-
32
-
-
77955583635
-
Flexible high-output nanogenerator based on lateral ZnO nanowire array
-
Zhu, G., Yang, R., Wang, S., Wang, Z.L., Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10 (2010), 3151–3155.
-
(2010)
Nano Lett.
, vol.10
, pp. 3151-3155
-
-
Zhu, G.1
Yang, R.2
Wang, S.3
Wang, Z.L.4
-
33
-
-
79961232396
-
Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators
-
Kumar, B., Lee, K.Y., Park, H.-K., Chae, S.J., Lee, Y.H., Kim, S.-W., Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5 (2011), 4197–4204.
-
(2011)
ACS Nano
, vol.5
, pp. 4197-4204
-
-
Kumar, B.1
Lee, K.Y.2
Park, H.-K.3
Chae, S.J.4
Lee, Y.H.5
Kim, S.-W.6
-
34
-
-
84921770418
-
A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency
-
Whiter, R.A., Narayan, V., Kar-Narayan, S., A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater, 4, 2014, 1400519.
-
(2014)
Adv. Energy Mater
, vol.4
, pp. 1400519
-
-
Whiter, R.A.1
Narayan, V.2
Kar-Narayan, S.3
-
35
-
-
84945143948
-
Energy conversion efficiency of piezoelectric ceramic and polymer nanowires
-
Crossley, S., Kar-Narayan, S., Energy conversion efficiency of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26, 2015, 344001.
-
(2015)
Nanotechnology
, vol.26
, pp. 344001
-
-
Crossley, S.1
Kar-Narayan, S.2
-
36
-
-
84975131285
-
Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting
-
Boughey, F.L., Davies, T., Datta, A., Whiter, R.A., Sahonta, S.-L., Kar-Narayan, S., Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting. Nanotechnology, 27, 2016, 28LT02.
-
(2016)
Nanotechnology
, vol.27
, pp. 28LT02
-
-
Boughey, F.L.1
Davies, T.2
Datta, A.3
Whiter, R.A.4
Sahonta, S.-L.5
Kar-Narayan, S.6
-
37
-
-
33846077160
-
Energy harvesting vibration sources for microsystems applications
-
Beeby, S.P., Tudor, M.J., White, N.M., Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17 (2006), R175–R195.
-
(2006)
Meas. Sci. Technol.
, vol.17
, pp. R175-R195
-
-
Beeby, S.P.1
Tudor, M.J.2
White, N.M.3
-
38
-
-
68849103726
-
Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
-
Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C. III, Kim, D.-J., Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensor. Actuat. A Phys. 154 (2009), 103–108.
-
(2009)
Sensor. Actuat. A Phys.
, vol.154
, pp. 103-108
-
-
Shen, D.1
Park, J.-H.2
Noh, J.H.3
Choe, S.-Y.4
Kim, S.-H.5
Wikle, H.C.6
Kim, D.-J.7
-
39
-
-
0001070885
-
A 1,5000,000 volt electrostatic generator
-
Graaf, R.J.V.D., A 1,5000,000 volt electrostatic generator. Rhys. Rev., 38, 1931, 1919.
-
(1931)
Rhys. Rev.
, vol.38
, pp. 1919
-
-
Graaf, R.J.V.D.1
-
40
-
-
85008055140
-
Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications
-
Kulah, H., Najafi, K., Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 8 (2008), 261–268.
-
(2008)
IEEE Sens. J.
, vol.8
, pp. 261-268
-
-
Kulah, H.1
Najafi, K.2
-
41
-
-
0016939287
-
Method for random vibration of hysteretic systems
-
Wen, Y.-K., Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102 (1976), 249–263.
-
(1976)
J. Eng. Mech. Div.
, vol.102
, pp. 249-263
-
-
Wen, Y.-K.1
-
42
-
-
84885497229
-
Self-powered flexible printed circuit board with integrated triboelectric generator
-
Meng, B., Tang, W., Zhang, X., Han, M., Liu, W., Zhang, H., Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2 (2013), 1101–1106.
-
(2013)
Nano Energy
, vol.2
, pp. 1101-1106
-
-
Meng, B.1
Tang, W.2
Zhang, X.3
Han, M.4
Liu, W.5
Zhang, H.6
-
43
-
-
84899430915
-
Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion
-
Jing, Q., Zhu, G., Bai, P., Xie, Y., Chen, J., Han, R.P.S., Wang, Z.L., Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8 (2014), 3836–3842.
-
(2014)
ACS Nano
, vol.8
, pp. 3836-3842
-
-
Jing, Q.1
Zhu, G.2
Bai, P.3
Xie, Y.4
Chen, J.5
Han, R.P.S.6
Wang, Z.L.7
-
44
-
-
84921463210
-
Transparent and flexible barcode based on sliding electrification for self-powered identification systems
-
Bai, P., Zhu, G., Jing, Q., Wu, Y., Yang, J., Chen, J., Ma, J., Zhang, G., Wang, Z.L., Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy 12 (2015), 278–286.
-
(2015)
Nano Energy
, vol.12
, pp. 278-286
-
-
Bai, P.1
Zhu, G.2
Jing, Q.3
Wu, Y.4
Yang, J.5
Chen, J.6
Ma, J.7
Zhang, G.8
Wang, Z.L.9
-
45
-
-
84920934244
-
A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions
-
Guo, H., Leng, Q., He, X., Wang, M., Chen, J., Hu, C., Xi, Y., A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater, 5, 2015, 1400790.
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1400790
-
-
Guo, H.1
Leng, Q.2
He, X.3
Wang, M.4
Chen, J.5
Hu, C.6
Xi, Y.7
-
46
-
-
84955296973
-
Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics
-
Kuang, S.Y., Chen, J., Cheng, X.B., Zhu, G., Wang, Z.L., Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 17 (2015), 10–16.
-
(2015)
Nano Energy
, vol.17
, pp. 10-16
-
-
Kuang, S.Y.1
Chen, J.2
Cheng, X.B.3
Zhu, G.4
Wang, Z.L.5
-
47
-
-
84912008402
-
High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies
-
Zhang, X.-S., Han, M.-D., Meng, B., Zhang, H.-X., High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 11 (2015), 304–322.
-
(2015)
Nano Energy
, vol.11
, pp. 304-322
-
-
Zhang, X.-S.1
Han, M.-D.2
Meng, B.3
Zhang, H.-X.4
-
48
-
-
84940654219
-
Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy
-
Zhang, L., Jin, L., Zhang, B., Deng, W., Pan, H., Tang, J., Zhu, M., Yang, W., Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 16 (2015), 516–523.
-
(2015)
Nano Energy
, vol.16
, pp. 516-523
-
-
Zhang, L.1
Jin, L.2
Zhang, B.3
Deng, W.4
Pan, H.5
Tang, J.6
Zhu, M.7
Yang, W.8
-
49
-
-
84959481558
-
Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops
-
Zhang, L., Zhang, B., Chen, J., Jin, L., Deng, W., Tang, J., Zhang, H., Pan, H., Zhu, M., Yang, W., et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 28 (2015), 1650–1656.
-
(2015)
Adv. Mater.
, vol.28
, pp. 1650-1656
-
-
Zhang, L.1
Zhang, B.2
Chen, J.3
Jin, L.4
Deng, W.5
Tang, J.6
Zhang, H.7
Pan, H.8
Zhu, M.9
Yang, W.10
-
50
-
-
84940047542
-
Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
-
Seol, M.L., Woo, J.H., Jeon, S.B., Kim, D., Park, S.J., Hur, J., Choi, Y.K., Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14 (2015), 201–208.
-
(2015)
Nano Energy
, vol.14
, pp. 201-208
-
-
Seol, M.L.1
Woo, J.H.2
Jeon, S.B.3
Kim, D.4
Park, S.J.5
Hur, J.6
Choi, Y.K.7
-
51
-
-
84924787562
-
Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating
-
Liang, Q., Yan, X., Gu, Y., Zhang, K., Liang, M., Lu, S., Zheng, X., Zhang, Y., Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep., 5, 2015, 9080.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9080
-
-
Liang, Q.1
Yan, X.2
Gu, Y.3
Zhang, K.4
Liang, M.5
Lu, S.6
Zheng, X.7
Zhang, Y.8
-
52
-
-
84921509732
-
High-performance nanopattern triboelectric generator by block copolymer lithography
-
Kim, D., Jeon, S.B., Kim, J.Y., Seol, M.L., Kim, S.O., Choi, Y.K., High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12 (2015), 331–338.
-
(2015)
Nano Energy
, vol.12
, pp. 331-338
-
-
Kim, D.1
Jeon, S.B.2
Kim, J.Y.3
Seol, M.L.4
Kim, S.O.5
Choi, Y.K.6
-
53
-
-
84971641032
-
Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge
-
Su, Z., Han, M., Cheng, X., Chen, H., Chen, X., Zhang, H., Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge. Adv. Funct. Mater. 26 (2016), 5524–5533.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 5524-5533
-
-
Su, Z.1
Han, M.2
Cheng, X.3
Chen, H.4
Chen, X.5
Zhang, H.6
-
54
-
-
85019489436
-
Progress in triboelectric nanogenerators as self-powered smart sensors
-
Zhang, N., Tao, C., Fan, X., Chen, J., Progress in triboelectric nanogenerators as self-powered smart sensors. J. Mater. Res. 32 (2017), 1628–1646.
-
(2017)
J. Mater. Res.
, vol.32
, pp. 1628-1646
-
-
Zhang, N.1
Tao, C.2
Fan, X.3
Chen, J.4
-
55
-
-
85029950100
-
Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring
-
Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., Yang, J., Wang, Z.L., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11 (2017), 8830–8837.
-
(2017)
ACS Nano
, vol.11
, pp. 8830-8837
-
-
Lin, Z.1
Chen, J.2
Li, X.3
Zhou, Z.4
Meng, K.5
Wei, W.6
Yang, J.7
Wang, Z.L.8
-
56
-
-
84959358998
-
Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting
-
Chang, T.H., Peng, Y.W., Chen, C.H., Chang, T.W., Wu, J.M., Hwang, J.C., Gan, J.Y., Lin, Z.-H., Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting. Nano Energy 21 (2017), 238–246.
-
(2017)
Nano Energy
, vol.21
, pp. 238-246
-
-
Chang, T.H.1
Peng, Y.W.2
Chen, C.H.3
Chang, T.W.4
Wu, J.M.5
Hwang, J.C.6
Gan, J.Y.7
Lin, Z.-H.8
-
57
-
-
84858142463
-
Flexible triboelectric generator
-
Fan, F.-R., Tian, Z.-Q., Wang, Z.L., Flexible triboelectric generator. Nano Energy 1 (2012), 328–334.
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.-R.1
Tian, Z.-Q.2
Wang, Z.L.3
-
58
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z.L., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12 (2012), 3109–3114.
-
(2012)
Nano Lett.
, vol.12
, pp. 3109-3114
-
-
Fan, F.-R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
59
-
-
84870879691
-
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
-
Wang, S., Lin, L., Wang, Z.L., Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12 (2012), 6339–6346.
-
(2012)
Nano Lett.
, vol.12
, pp. 6339-6346
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
60
-
-
84870409013
-
Self-powered magnetic sensor based on a triboelectric nanogenerator
-
Yang, Y., Lin, L., Zhang, Y., Jing, Q., Hou, T.-C., Wang, Z.L., Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6 (2012), 10378–10383.
-
(2012)
ACS Nano
, vol.6
, pp. 10378-10383
-
-
Yang, Y.1
Lin, L.2
Zhang, Y.3
Jing, Q.4
Hou, T.-C.5
Wang, Z.L.6
-
61
-
-
84866307475
-
Triboelectric-generator-driven pulse electrodeposition for micropatterning
-
Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., Wang, Z.L., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12 (2012), 4960–4965.
-
(2012)
Nano Lett.
, vol.12
, pp. 4960-4965
-
-
Zhu, G.1
Pan, C.2
Guo, W.3
Chen, C.-Y.4
Zhou, Y.5
Yu, R.6
Wang, Z.L.7
-
62
-
-
84876541745
-
Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
-
Bai, P., Zhu, G., Lin, Z.-H., Jing, Q., Chen, J., Zhang, G., Ma, J., Wang, Z.L., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7 (2013), 3713–3719.
-
(2013)
ACS Nano
, vol.7
, pp. 3713-3719
-
-
Bai, P.1
Zhu, G.2
Lin, Z.-H.3
Jing, Q.4
Chen, J.5
Zhang, G.6
Ma, J.7
Wang, Z.L.8
-
63
-
-
84922748166
-
Spiral-interdigital-electrode-based multifunctional device: dual-functional triboelectric generator and dual-functional self-powered sensor
-
Guo, H., Chen, J., Leng, Q., Xi, Y., Wang, M., He, X., Hu, C., Spiral-interdigital-electrode-based multifunctional device: dual-functional triboelectric generator and dual-functional self-powered sensor. Nano Energy 12 (2015), 626–635.
-
(2015)
Nano Energy
, vol.12
, pp. 626-635
-
-
Guo, H.1
Chen, J.2
Leng, Q.3
Xi, Y.4
Wang, M.5
He, X.6
Hu, C.7
-
64
-
-
84901675803
-
Triboelectrification based motion sensor for human-machine interfacing
-
Yang, W., Chen, J., Wen, X., Jing, Q., Yang, J., Su, Y., Zhu, G., Wu, W., Wang, Z.L., Triboelectrification based motion sensor for human-machine interfacing. ACS Appl. Mater. Inter. 6 (2014), 7479–7484.
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, pp. 7479-7484
-
-
Yang, W.1
Chen, J.2
Wen, X.3
Jing, Q.4
Yang, J.5
Su, Y.6
Zhu, G.7
Wu, W.8
Wang, Z.L.9
-
65
-
-
84887009033
-
Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
-
Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.-H., Su, Y., Bai, P., Wen, X., Wang, Z.L., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7 (2013), 9461–9468.
-
(2013)
ACS Nano
, vol.7
, pp. 9461-9468
-
-
Yang, Y.1
Zhu, G.2
Zhang, H.3
Chen, J.4
Zhong, X.5
Lin, Z.-H.6
Su, Y.7
Bai, P.8
Wen, X.9
Wang, Z.L.10
-
66
-
-
84883243068
-
Pulsed nanogenerator with huge instantaneous output power density
-
Cheng, G., Lin, Z.-H., Lin, L., Du, Z., Wang, Z.L., Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7 (2013), 7383–7391.
-
(2013)
ACS Nano
, vol.7
, pp. 7383-7391
-
-
Cheng, G.1
Lin, Z.-H.2
Lin, L.3
Du, Z.4
Wang, Z.L.5
-
67
-
-
84903488394
-
Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
-
Zhu, G., Su, Y., Bai, P., Chen, J., Jing, Q., Yang, W., Wang, Z.L., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8 (2014), 6031–6037.
-
(2014)
ACS Nano
, vol.8
, pp. 6031-6037
-
-
Zhu, G.1
Su, Y.2
Bai, P.3
Chen, J.4
Jing, Q.5
Yang, W.6
Wang, Z.L.7
-
68
-
-
84908607695
-
Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels
-
Han, C.B., Zhang, C., Li, X.H., Zhang, L., Zhou, T., Hu, W., Wang, Z.L., Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy 9 (2014), 325–333.
-
(2014)
Nano Energy
, vol.9
, pp. 325-333
-
-
Han, C.B.1
Zhang, C.2
Li, X.H.3
Zhang, L.4
Zhou, T.5
Hu, W.6
Wang, Z.L.7
-
69
-
-
84894612957
-
Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator
-
Cheng, G., Lin, Z.-H., Du, Z.-L., Wang, Z.L., Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 8 (2014), 1932–1939.
-
(2014)
ACS Nano
, vol.8
, pp. 1932-1939
-
-
Cheng, G.1
Lin, Z.-H.2
Du, Z.-L.3
Wang, Z.L.4
-
70
-
-
84882610548
-
A hybrid energy cell for self-powered water splitting
-
Yang, Y., Zhang, H., Lin, Z.-H., Liu, Y., Chen, J., Lin, Z., Zhou, Y.S., Wong, C.P., Wang, Z.L., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6 (2013), 2429–2434.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2429-2434
-
-
Yang, Y.1
Zhang, H.2
Lin, Z.-H.3
Liu, Y.4
Chen, J.5
Lin, Z.6
Zhou, Y.S.7
Wong, C.P.8
Wang, Z.L.9
-
71
-
-
84952311904
-
Automatic mode transition enabled robust triboelectric nanogenerators
-
Chen, J., Yang, J., Guo, H., Li, Z., Zheng, L., Su, Y., Wen, Z., Fan, X., Wang, Z.L., Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 9 (2015), 12334–12343.
-
(2015)
ACS Nano
, vol.9
, pp. 12334-12343
-
-
Chen, J.1
Yang, J.2
Guo, H.3
Li, Z.4
Zheng, L.5
Su, Y.6
Wen, Z.7
Fan, X.8
Wang, Z.L.9
-
72
-
-
84908569543
-
Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions
-
Jing, Q., Zhu, G., Wu, W., Bai, P., Xie, Y., Han, R.P.S., Wang, Z.L., Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy 10 (2014), 305–312.
-
(2014)
Nano Energy
, vol.10
, pp. 305-312
-
-
Jing, Q.1
Zhu, G.2
Wu, W.3
Bai, P.4
Xie, Y.5
Han, R.P.S.6
Wang, Z.L.7
-
73
-
-
84923290515
-
Flutter-driven triboelectrification for harvesting wind energy
-
Bae, J., Lee, J., Kim, S., Ha, J., Lee, B.-S., Park, Y., Choong, C., Kim, J.-B., Wang, Z.L., Kim, H.-Y., et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun., 5, 2014, 4929.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4929
-
-
Bae, J.1
Lee, J.2
Kim, S.3
Ha, J.4
Lee, B.-S.5
Park, Y.6
Choong, C.7
Kim, J.-B.8
Wang, Z.L.9
Kim, H.-Y.10
-
74
-
-
84895830368
-
Radial-arrayed rotary electrification for high performance triboelectric generator
-
Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L., Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun., 5, 2014, 3426.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3426
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
75
-
-
84947040342
-
A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock
-
Zheng, L., Cheng, G., Chen, J., Lin, L., Wang, J., Liu, Y., Li, H., Wang, Z.L., A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock. Adv. Energy Mater, 5, 2015, 1501152.
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1501152
-
-
Zheng, L.1
Cheng, G.2
Chen, J.3
Lin, L.4
Wang, J.5
Liu, Y.6
Li, H.7
Wang, Z.L.8
-
76
-
-
84921716284
-
Personalized keystroke dynamics for self-powered human-machine interfacing
-
Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., Wang, Z.L., Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 9 (2015), 105–116.
-
(2015)
ACS Nano
, vol.9
, pp. 105-116
-
-
Chen, J.1
Zhu, G.2
Yang, J.3
Jing, Q.4
Bai, P.5
Yang, W.6
Qi, X.7
Su, Y.8
Wang, Z.L.9
-
77
-
-
84949604267
-
A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
-
Niu, S., Wang, X., Yi, F., Zhou, Y.S., Wang, Z.L., A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun., 6, 2015, 8975.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8975
-
-
Niu, S.1
Wang, X.2
Yi, F.3
Zhou, Y.S.4
Wang, Z.L.5
-
78
-
-
84942627279
-
Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
-
Zi, Y., Niu, S., Wang, J., Wen, Z., Tang, W., Wang, Z.L., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun., 6, 2015, 8376.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8376
-
-
Zi, Y.1
Niu, S.2
Wang, J.3
Wen, Z.4
Tang, W.5
Wang, Z.L.6
-
79
-
-
84960920281
-
Effective energy storage from a triboelectric nanogenerator
-
Zi, Y., Wang, J., Wang, S., Li, S., Wen, Z., Guo, H., Wang, Z.L., Effective energy storage from a triboelectric nanogenerator. Nat. Commun., 7, 2016, 10987.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10987
-
-
Zi, Y.1
Wang, J.2
Wang, S.3
Li, S.4
Wen, Z.5
Guo, H.6
Wang, Z.L.7
-
80
-
-
84983527690
-
Self-powered safety helmet based on hybridized nanogenerator for emergency
-
Jin, L., Chen, J., Zhang, B., Deng, W., Zhang, L., Zhang, H., Huang, X., Zhu, M., Yang, W., Wang, Z.L., Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 10 (2016), 7874–7881.
-
(2016)
ACS Nano
, vol.10
, pp. 7874-7881
-
-
Jin, L.1
Chen, J.2
Zhang, B.3
Deng, W.4
Zhang, L.5
Zhang, H.6
Huang, X.7
Zhu, M.8
Yang, W.9
Wang, Z.L.10
-
81
-
-
84959432417
-
Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater
-
Li, Z., Chen, J., Guo, H., Fan, X., Wen, Z., Yeh, M.-H., Yu, C., Cao, X., Wang, Z.L., Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 28 (2016), 2983–2991.
-
(2016)
Adv. Mater.
, vol.28
, pp. 2983-2991
-
-
Li, Z.1
Chen, J.2
Guo, H.3
Fan, X.4
Wen, Z.5
Yeh, M.-H.6
Yu, C.7
Cao, X.8
Wang, Z.L.9
-
82
-
-
84959910502
-
High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator
-
Li, Z., Chen, J., Zhou, J., Zheng, L., Pradel, K.C., Fan, X., Guo, H., Wen, Z., Yeh, M.-H., Yu, C., et al. High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22 (2016), 548–557.
-
(2016)
Nano Energy
, vol.22
, pp. 548-557
-
-
Li, Z.1
Chen, J.2
Zhou, J.3
Zheng, L.4
Pradel, K.C.5
Fan, X.6
Guo, H.7
Wen, Z.8
Yeh, M.-H.9
Yu, C.10
-
83
-
-
85009209140
-
On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
-
Wang, Z.L., On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20 (2017), 74–82.
-
(2017)
Mater. Today
, vol.20
, pp. 74-82
-
-
Wang, Z.L.1
-
84
-
-
84938362015
-
Theoretical systems of triboelectric nanogenerators
-
Niu, S., Wang, Z.L., Theoretical systems of triboelectric nanogenerators. Nano Energy 14 (2015), 161–192.
-
(2015)
Nano Energy
, vol.14
, pp. 161-192
-
-
Niu, S.1
Wang, Z.L.2
-
85
-
-
84924743446
-
Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives
-
Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Farad. Discuss. 176 (2014), 447–458.
-
(2014)
Farad. Discuss.
, vol.176
, pp. 447-458
-
-
Wang, Z.L.1
-
86
-
-
84887919979
-
Theoretical study of contact-mode triboelectric nanogenerators as an effective power source
-
Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y.S., Hu, Y., Wang, Z.L., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6 (2013), 3576–3583.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3576-3583
-
-
Niu, S.1
Wang, S.2
Lin, L.3
Liu, Y.4
Zhou, Y.S.5
Hu, Y.6
Wang, Z.L.7
-
87
-
-
84873676798
-
Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
-
Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y., Wang, Z.L., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13 (2013), 847–853.
-
(2013)
Nano Lett.
, vol.13
, pp. 847-853
-
-
Zhu, G.1
Lin, Z.-H.2
Jing, Q.3
Bai, P.4
Pan, C.5
Yang, Y.6
Zhou, Y.7
Wang, Z.L.8
-
88
-
-
84874967575
-
Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
Zhang, X.-S., Han, M.-D., Wang, R.-X., Zhu, F.-Y., Li, Z.-H., Wang, W., Zhang, H.-X., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13 (2013), 1168–1172.
-
(2013)
Nano Lett.
, vol.13
, pp. 1168-1172
-
-
Zhang, X.-S.1
Han, M.-D.2
Wang, R.-X.3
Zhu, F.-Y.4
Li, Z.-H.5
Wang, W.6
Zhang, H.-X.7
-
89
-
-
84878322287
-
Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs
-
Zhong, J., Zhong, Q., Fan, F., Zhang, Y., Wang, S., Hu, B., Wang, Z.L., Zhou, J., Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2 (2013), 491–497.
-
(2013)
Nano Energy
, vol.2
, pp. 491-497
-
-
Zhong, J.1
Zhong, Q.2
Fan, F.3
Zhang, Y.4
Wang, S.5
Hu, B.6
Wang, Z.L.7
Zhou, J.8
-
90
-
-
84902324521
-
Transparent flexible graphene triboelectric nanogenerators
-
Kim, S., Gupta, M.K., Lee, K.Y., Sohn, A., Kim, T.Y., Shin, K.-S., Kim, D., Kim, S.K., Lee, K.H., Shin, H.-J., et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26 (2014), 3918–3925.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3918-3925
-
-
Kim, S.1
Gupta, M.K.2
Lee, K.Y.3
Sohn, A.4
Kim, T.Y.5
Shin, K.-S.6
Kim, D.7
Kim, S.K.8
Lee, K.H.9
Shin, H.-J.10
-
91
-
-
84905455245
-
Hydrophobic sponge structure-based triboelectric nanogenerator
-
Lee, K.Y., Chun, J., Lee, J.-H., Kim, K.N., Kang, N.-R., Kim, J.-Y., Kim, M.H., Shin, K.-S., Gupta, M.K., Baik, J.M., et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26 (2014), 5037–5042.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5037-5042
-
-
Lee, K.Y.1
Chun, J.2
Lee, J.-H.3
Kim, K.N.4
Kang, N.-R.5
Kim, J.-Y.6
Kim, M.H.7
Shin, K.-S.8
Gupta, M.K.9
Baik, J.M.10
-
92
-
-
84887999844
-
Theory of sliding-mode triboelectric nanogenerators
-
Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., Wang, Z.L., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25 (2013), 6184–6193.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6184-6193
-
-
Niu, S.1
Liu, Y.2
Wang, S.3
Lin, L.4
Zhou, Y.S.5
Hu, Y.6
Wang, Z.L.7
-
93
-
-
84877283238
-
Linear-grating triboelectric generator based on sliding electrification
-
Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y.S., Jing, Q., Pan, C., Wang, Z.L., Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13 (2013), 2282–2289.
-
(2013)
Nano Lett.
, vol.13
, pp. 2282-2289
-
-
Zhu, G.1
Chen, J.2
Liu, Y.3
Bai, P.4
Zhou, Y.S.5
Jing, Q.6
Pan, C.7
Wang, Z.L.8
-
94
-
-
84877248750
-
Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
-
Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., Wang, Z.L., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13 (2013), 2226–2233.
-
(2013)
Nano Lett.
, vol.13
, pp. 2226-2233
-
-
Wang, S.1
Lin, L.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Wang, Z.L.6
-
95
-
-
84880804971
-
Cylindrical rotating triboelectric nanogenerator
-
Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., Ma, J., Zhang, G., Wang, Z.L., Cylindrical rotating triboelectric nanogenerator. ACS Nano 7 (2013), 6361–6366.
-
(2013)
ACS Nano
, vol.7
, pp. 6361-6366
-
-
Bai, P.1
Zhu, G.2
Liu, Y.3
Chen, J.4
Jing, Q.5
Yang, W.6
Ma, J.7
Zhang, G.8
Wang, Z.L.9
-
96
-
-
84879092885
-
Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
-
Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., Wang, Z.L., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13 (2013), 2916–2923.
-
(2013)
Nano Lett.
, vol.13
, pp. 2916-2923
-
-
Lin, L.1
Wang, S.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Hu, Y.6
Wang, Z.L.7
-
97
-
-
84917682257
-
Multi-layered disk triboelectric nanogenerator for harvesting hydropower
-
Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Su, Y., Wu, Z., Wang, Z.L., Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 6 (2014), 129–136.
-
(2014)
Nano Energy
, vol.6
, pp. 129-136
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Su, Y.6
Wu, Z.7
Wang, Z.L.8
-
98
-
-
84902144382
-
Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators
-
Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., Wang, Z.L., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24 (2014), 3332–3340.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 3332-3340
-
-
Niu, S.1
Liu, Y.2
Wang, S.3
Lin, L.4
Zhou, Y.S.5
Hu, Y.6
Wang, Z.L.7
-
99
-
-
84883228020
-
Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
-
Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., Wang, Z.L., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7 (2013), 7342–7351.
-
(2013)
ACS Nano
, vol.7
, pp. 7342-7351
-
-
Yang, Y.1
Zhang, H.2
Chen, J.3
Jing, Q.4
Zhou, Y.S.5
Wen, X.6
Wang, Z.L.7
-
100
-
-
84929327033
-
Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires
-
Mao, Y., Geng, D., Liang, E., Wang, X., Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15 (2015), 227–234.
-
(2015)
Nano Energy
, vol.15
, pp. 227-234
-
-
Mao, Y.1
Geng, D.2
Liang, E.3
Wang, X.4
-
101
-
-
84886052589
-
A transparent single-friction-surface triboelectric generator and self-powered touch sensor
-
Meng, B., Tang, W., Too, Z.-H., Zhang, X., Han, M., Liu, W., Zhang, H., A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6 (2013), 3235–3240.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3235-3240
-
-
Meng, B.1
Tang, W.2
Too, Z.-H.3
Zhang, X.4
Han, M.5
Liu, W.6
Zhang, H.7
-
102
-
-
84923008507
-
Theory of freestanding triboelectric-layer-based nanogenerators
-
Niu, S., Liu, Y., Chen, X., Wang, S., Zhou, Y.S., Lin, L., Xie, Y., Wang, Z.L., Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12 (2015), 760–774.
-
(2015)
Nano Energy
, vol.12
, pp. 760-774
-
-
Niu, S.1
Liu, Y.2
Chen, X.3
Wang, S.4
Zhou, Y.S.5
Lin, L.6
Xie, Y.7
Wang, Z.L.8
-
103
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
Wang, S., Xie, Y., Niu, S., Lin, L., Wang, Z.L., Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26 (2014), 2818–2824.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
104
-
-
84896817510
-
Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor
-
Lin, L., Wang, S., Niu, S., Liu, C., Xie, Y., Wang, Z.L., Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Inter. 6 (2014), 3031–3038.
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, pp. 3031-3038
-
-
Lin, L.1
Wang, S.2
Niu, S.3
Liu, C.4
Xie, Y.5
Wang, Z.L.6
-
105
-
-
85027918108
-
Theoretical study of rotary freestanding triboelectric nanogenerators
-
Jiang, T., Chen, X., Han, C.B., Tang, W., Wang, Z.L., Theoretical study of rotary freestanding triboelectric nanogenerators. Adv. Funct. Mater. 25 (2015), 2928–2938.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 2928-2938
-
-
Jiang, T.1
Chen, X.2
Han, C.B.3
Tang, W.4
Wang, Z.L.5
-
106
-
-
84887481607
-
Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
-
Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.-C., Wang, Z.L., Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25 (2013), 6094–6099.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6094-6099
-
-
Chen, J.1
Zhu, G.2
Yang, W.3
Jing, Q.4
Bai, P.5
Yang, Y.6
Hou, T.-C.7
Wang, Z.L.8
-
107
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7 (2013), 9533–9557.
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
108
-
-
84904199302
-
3D stack integrated triboelectric nanogenerator for harvesting vibration energy
-
Yang, W., Chen, J., Jing, Q., Yang, J., Wen, X., Su, Y., Zhu, G., Bai, P., Wang, Z.L., 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24 (2014), 4090–4096.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4090-4096
-
-
Yang, W.1
Chen, J.2
Jing, Q.3
Yang, J.4
Wen, X.5
Su, Y.6
Zhu, G.7
Bai, P.8
Wang, Z.L.9
-
109
-
-
84890114619
-
Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator
-
Yang, W., Chen, J., Zhu, G., Wen, X., Bai, P., Su, Y., Lin, Y., Wang, Z.L., Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 6 (2013), 880–886.
-
(2013)
Nano Res.
, vol.6
, pp. 880-886
-
-
Yang, W.1
Chen, J.2
Zhu, G.3
Wen, X.4
Bai, P.5
Su, Y.6
Lin, Y.7
Wang, Z.L.8
-
110
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8 (2015), 2250–2282.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
111
-
-
84908085608
-
Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration
-
Tang, W., Han, C.B., Zhang, C., Wang, Z.L., Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9 (2014), 121–127.
-
(2014)
Nano Energy
, vol.9
, pp. 121-127
-
-
Tang, W.1
Han, C.B.2
Zhang, C.3
Wang, Z.L.4
-
112
-
-
85027955168
-
Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%
-
Tang, W., Jiang, T., Fan, F.R., Yu, A.F., Zhang, C., Cao, X., Wang, Z.L., Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25 (2015), 3718–3725.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3718-3725
-
-
Tang, W.1
Jiang, T.2
Fan, F.R.3
Yu, A.F.4
Zhang, C.5
Cao, X.6
Wang, Z.L.7
-
113
-
-
84941051519
-
Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
-
Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., Wang, Z.L., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26 (2014), 6599–6607.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6599-6607
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Yang, J.6
Wu, Z.7
Wang, Z.L.8
-
114
-
-
84946491060
-
Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
-
Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L., Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14 (2015), 126–138.
-
(2015)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Wang, Z.L.5
-
115
-
-
84900475725
-
Broadband vibrational energy harvesting based on a triboelectric nanogenerator
-
Yang, J., Chen, J., Yang, Y., Zhang, H., Yang, W., Bai, P., Su, Y., Wang, Z.L., Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater, 4, 2014, 1301322.
-
(2014)
Adv. Energy Mater
, vol.4
, pp. 1301322
-
-
Yang, J.1
Chen, J.2
Yang, Y.3
Zhang, H.4
Yang, W.5
Bai, P.6
Su, Y.7
Wang, Z.L.8
-
116
-
-
84891367534
-
Harvesting energy from natural vibration of human walking
-
Yang, W., Chen, J., Zhu, G., Yang, J., Bai, P., Su, Y., Jing, Q., Cao, X., Wang, Z.L., Harvesting energy from natural vibration of human walking. ACS Nano 7 (2013), 11317–11324.
-
(2013)
ACS Nano
, vol.7
, pp. 11317-11324
-
-
Yang, W.1
Chen, J.2
Zhu, G.3
Yang, J.4
Bai, P.5
Su, Y.6
Jing, Q.7
Cao, X.8
Wang, Z.L.9
-
117
-
-
84885390532
-
Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
-
Hou, T.-C., Yang, Y., Zhang, H., Chen, J., Chen, L.-J., Wang, Z.L., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2 (2013), 856–862.
-
(2013)
Nano Energy
, vol.2
, pp. 856-862
-
-
Hou, T.-C.1
Yang, Y.2
Zhang, H.3
Chen, J.4
Chen, L.-J.5
Wang, Z.L.6
-
118
-
-
84883868353
-
Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
-
Zhu, G., Bai, P., Chen, J., Wang, Z.L., Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2 (2013), 688–692.
-
(2013)
Nano Energy
, vol.2
, pp. 688-692
-
-
Zhu, G.1
Bai, P.2
Chen, J.3
Wang, Z.L.4
-
119
-
-
84904722255
-
Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves
-
Wen, X., Yang, W., Jing, Q., Wang, Z.L., Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8 (2014), 7405–7412.
-
(2014)
ACS Nano
, vol.8
, pp. 7405-7412
-
-
Wen, X.1
Yang, W.2
Jing, Q.3
Wang, Z.L.4
-
120
-
-
84877711037
-
A self-powered triboelectric nanosensor for mercury ion detection
-
Lin, Z.-H., Zhu, G., Zhou, Y.S., Yang, Y., Bai, P., Chen, J., Wang, Z.L., A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52 (2013), 5065–5069.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 5065-5069
-
-
Lin, Z.-H.1
Zhu, G.2
Zhou, Y.S.3
Yang, Y.4
Bai, P.5
Chen, J.6
Wang, Z.L.7
-
121
-
-
84883710227
-
Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
-
Zhang, H., Yang, Y., Su, Y., Chen, J., Hu, C., Wu, Z., Liu, Y., Wong, C.P., Bando, Y., Wang, Z.L., Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2 (2013), 693–701.
-
(2013)
Nano Energy
, vol.2
, pp. 693-701
-
-
Zhang, H.1
Yang, Y.2
Su, Y.3
Chen, J.4
Hu, C.5
Wu, Z.6
Liu, Y.7
Wong, C.P.8
Bando, Y.9
Wang, Z.L.10
-
122
-
-
84896774466
-
Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor
-
Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., Hu, C., Wang, Z.L., Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 24 (2014), 1401–1407.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 1401-1407
-
-
Zhang, H.1
Yang, Y.2
Su, Y.3
Chen, J.4
Adams, K.5
Lee, S.6
Hu, C.7
Wang, Z.L.8
-
123
-
-
84896920017
-
Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing
-
Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., Wang, Z.L., Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8 (2014), 2649–2657.
-
(2014)
ACS Nano
, vol.8
, pp. 2649-2657
-
-
Yang, J.1
Chen, J.2
Liu, Y.3
Yang, W.4
Su, Y.5
Wang, Z.L.6
-
124
-
-
84923225967
-
Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition
-
Yang, J., Chen, J., Su, Y., Jing, Q., Li, Z., Yi, F., Wen, X., Wang, Z., Wang, Z.L., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27 (2015), 1316–1326.
-
(2015)
Adv. Mater.
, vol.27
, pp. 1316-1326
-
-
Yang, J.1
Chen, J.2
Su, Y.3
Jing, Q.4
Li, Z.5
Yi, F.6
Wen, X.7
Wang, Z.8
Wang, Z.L.9
-
125
-
-
84899411211
-
Triboelectric sensor for self-powered tracking of object motion inside tubing
-
Su, Y., Zhu, G., Yang, W., Yang, J., Chen, J., Jing, Q., Wu, Z., Jiang, Y., Wang, Z.L., Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 8 (2014), 3843–3850.
-
(2014)
ACS Nano
, vol.8
, pp. 3843-3850
-
-
Su, Y.1
Zhu, G.2
Yang, W.3
Yang, J.4
Chen, J.5
Jing, Q.6
Wu, Z.7
Jiang, Y.8
Wang, Z.L.9
-
126
-
-
85027931329
-
Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors
-
Yi, F., Lin, L., Niu, S., Yang, P.K., Wang, Z., Chen, J., Zhou, Y., Zi, Y., Wang, J., Liao, Q., et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 25 (2015), 3688–3696.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3688-3696
-
-
Yi, F.1
Lin, L.2
Niu, S.3
Yang, P.K.4
Wang, Z.5
Chen, J.6
Zhou, Y.7
Zi, Y.8
Wang, J.9
Liao, Q.10
-
127
-
-
84902254803
-
Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
-
Zhu, G., Yang, W., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., Bai, P., Wang, Z.L., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14 (2014), 3208–3213.
-
(2014)
Nano Lett.
, vol.14
, pp. 3208-3213
-
-
Zhu, G.1
Yang, W.2
Zhang, T.3
Jing, Q.4
Chen, J.5
Zhou, Y.S.6
Bai, P.7
Wang, Z.L.8
-
128
-
-
85027931032
-
Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing
-
Zi, Y., Lin, L., Wang, J., Wang, S., Chen, J., Fan, X., Yang, P.-K., Yi, F., Wang, Z.L., Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27 (2015), 2340–2347.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2340-2347
-
-
Zi, Y.1
Lin, L.2
Wang, J.3
Wang, S.4
Chen, J.5
Fan, X.6
Yang, P.-K.7
Yi, F.8
Wang, Z.L.9
-
129
-
-
84913554665
-
Triboelectric nanogenerators as self-powered active sensors
-
Wang, S., Lin, L., Wang, Z.L., Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11 (2015), 436–462.
-
(2015)
Nano Energy
, vol.11
, pp. 436-462
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
130
-
-
84923799002
-
Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing
-
Su, Y., Chen, J., Wu, Z., Jiang, Y., Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing. Appl. Phys. Lett., 106, 2015, 013114.
-
(2015)
Appl. Phys. Lett.
, vol.106
, pp. 013114
-
-
Su, Y.1
Chen, J.2
Wu, Z.3
Jiang, Y.4
-
131
-
-
84934766637
-
Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
-
Wen, Z., Chen, J., Yeh, M.-H., Guo, H., Li, Z., Fan, X., Zhang, T., Zhu, L., Wang, Z.L., Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16 (2015), 38–46.
-
(2015)
Nano Energy
, vol.16
, pp. 38-46
-
-
Wen, Z.1
Chen, J.2
Yeh, M.-H.3
Guo, H.4
Li, Z.5
Fan, X.6
Zhang, T.7
Zhu, L.8
Wang, Z.L.9
-
132
-
-
85027958517
-
A self-powered angle measurement sensor based on triboelectric nanogenerator
-
Wu, Y., Jing, Q., Chen, J., Bai, P., Bai, J., Zhu, G., Su, Y., Wang, Z.L., A self-powered angle measurement sensor based on triboelectric nanogenerator. Adv. Funct. Mater. 25 (2015), 2166–2174.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 2166-2174
-
-
Wu, Y.1
Jing, Q.2
Chen, J.3
Bai, P.4
Bai, J.5
Zhu, G.6
Su, Y.7
Wang, Z.L.8
-
133
-
-
85012237000
-
Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing
-
Wang, J., Zhang, H., Xie, Y., Yan, Z., Yuan, Y., Huang, L., Cui, X., Gao, M., Su, Y., Yang, W., et al. Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy 33 (2017), 418–426.
-
(2017)
Nano Energy
, vol.33
, pp. 418-426
-
-
Wang, J.1
Zhang, H.2
Xie, Y.3
Yan, Z.4
Yuan, Y.5
Huang, L.6
Cui, X.7
Gao, M.8
Su, Y.9
Yang, W.10
-
134
-
-
84976597722
-
Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors
-
Zhang, B., Chen, J., Jin, L., Deng, W., Zhang, L., Zhang, H., Zhu, M., Yang, W., Wang, Z.L., Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10 (2016), 6241–6247.
-
(2016)
ACS Nano
, vol.10
, pp. 6241-6247
-
-
Zhang, B.1
Chen, J.2
Jin, L.3
Deng, W.4
Zhang, L.5
Zhang, H.6
Zhu, M.7
Yang, W.8
Wang, Z.L.9
-
135
-
-
84924405198
-
β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation
-
Li, Z., Chen, J., Yang, J., Su, Y., Fan, X., Wu, Y., Yu, C., Wang, Z.L., β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8 (2015), 887–896.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 887-896
-
-
Li, Z.1
Chen, J.2
Yang, J.3
Su, Y.4
Fan, X.5
Wu, Y.6
Yu, C.7
Wang, Z.L.8
-
136
-
-
84919709352
-
Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator
-
Wang, S., Niu, S., Yang, J., Lin, L., Wang, Z.L., Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8 (2014), 12004–12013.
-
(2014)
ACS Nano
, vol.8
, pp. 12004-12013
-
-
Wang, S.1
Niu, S.2
Yang, J.3
Lin, L.4
Wang, Z.L.5
-
137
-
-
84888870351
-
Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester
-
Hu, Y., Yang, J., Jing, Q., Niu, S., Wu, W., Wang, Z.L., Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7 (2013), 10424–10432.
-
(2013)
ACS Nano
, vol.7
, pp. 10424-10432
-
-
Hu, Y.1
Yang, J.2
Jing, Q.3
Niu, S.4
Wu, W.5
Wang, Z.L.6
-
138
-
-
84925496694
-
Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator
-
Yu, A., Song, M., Zhang, Y., Zhang, Y., Chen, L., Zhai, J., Wang, Z.L., Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 8 (2015), 765–773.
-
(2015)
Nano Res.
, vol.8
, pp. 765-773
-
-
Yu, A.1
Song, M.2
Zhang, Y.3
Zhang, Y.4
Chen, L.5
Zhai, J.6
Wang, Z.L.7
-
139
-
-
84928974890
-
Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
-
Fan, X., Chen, J., Yang, J., Bai, P., Li, Z., Wang, Z.L., Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9 (2015), 4236–4243.
-
(2015)
ACS Nano
, vol.9
, pp. 4236-4243
-
-
Fan, X.1
Chen, J.2
Yang, J.3
Bai, P.4
Li, Z.5
Wang, Z.L.6
-
140
-
-
84941118811
-
Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring
-
Bai, P., Zhu, G., Jing, Q., Yang, J., Chen, J., Su, Y., Ma, J., Zhang, G., Wang, Z.L., Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 24 (2014), 5807–5813.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 5807-5813
-
-
Bai, P.1
Zhu, G.2
Jing, Q.3
Yang, J.4
Chen, J.5
Su, Y.6
Ma, J.7
Zhang, G.8
Wang, Z.L.9
-
141
-
-
84861156859
-
Optimal geometry of a parallelized electret-based vibration energy harvester
-
Okamoto, H., Hamate, Y., Xu, L., Kuwano, H., Optimal geometry of a parallelized electret-based vibration energy harvester. Smart Mater. Struct., 21, 2012, 065001.
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 065001
-
-
Okamoto, H.1
Hamate, Y.2
Xu, L.3
Kuwano, H.4
-
142
-
-
84863038848
-
Tuning of nonlinear vibration via topology variation and its application in energy harvesting
-
Dai, X., Miao, X., Sui, L., Zhou, H., Zhao, X., Ding, G., Tuning of nonlinear vibration via topology variation and its application in energy harvesting. Appl. Phys. Lett., 100, 2012, 031902.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 031902
-
-
Dai, X.1
Miao, X.2
Sui, L.3
Zhou, H.4
Zhao, X.5
Ding, G.6
-
143
-
-
84876925012
-
A magnetically levitated vibration energy harvester
-
Wang, X.Y., Palagummi, S., Liu, L., Yuan, F.G., A magnetically levitated vibration energy harvester. Smart Mater. Struct., 22, 2013, 055016.
-
(2013)
Smart Mater. Struct.
, vol.22
, pp. 055016
-
-
Wang, X.Y.1
Palagummi, S.2
Liu, L.3
Yuan, F.G.4
-
144
-
-
85014232412
-
Harvesting ambient vibration energy over a wide frequency range for self-powered electronics
-
Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., Zhang, Y., You, Z., Wang, Z.L., Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11 (2017), 1728–1735.
-
(2017)
ACS Nano
, vol.11
, pp. 1728-1735
-
-
Wang, X.1
Niu, S.2
Yi, F.3
Yin, Y.4
Hao, C.5
Dai, K.6
Zhang, Y.7
You, Z.8
Wang, Z.L.9
-
145
-
-
84897552123
-
Soft microfluidic assemblies of sensors, circuits, and radios for the skin
-
Xu, S., Zhang, Y., Jia, L., Mathewson, K.E., Jang, K.I., Kim, J., Fu, H., Huang, X., Chava, P., Wang, R., et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344 (2014), 70–74.
-
(2014)
Science
, vol.344
, pp. 70-74
-
-
Xu, S.1
Zhang, Y.2
Jia, L.3
Mathewson, K.E.4
Jang, K.I.5
Kim, J.6
Fu, H.7
Huang, X.8
Chava, P.9
Wang, R.10
-
146
-
-
84938080401
-
Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics
-
Lee, K.Y., Gupta, M.K., Kim, S.-W., Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14 (2015), 139–160.
-
(2015)
Nano Energy
, vol.14
, pp. 139-160
-
-
Lee, K.Y.1
Gupta, M.K.2
Kim, S.-W.3
-
147
-
-
84921746992
-
Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies
-
Lee, S., Ko, W., Oh, Y., Lee, J., Baek, G., Lee, Y., Sohn, J., Cha, S., Kim, J., Park, J., et al. Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12 (2015), 410–418.
-
(2015)
Nano Energy
, vol.12
, pp. 410-418
-
-
Lee, S.1
Ko, W.2
Oh, Y.3
Lee, J.4
Baek, G.5
Lee, Y.6
Sohn, J.7
Cha, S.8
Kim, J.9
Park, J.10
-
148
-
-
84946496205
-
Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers
-
Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., Zhu, M., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14 (2015), 226–235.
-
(2015)
Nano Energy
, vol.14
, pp. 226-235
-
-
Huang, T.1
Wang, C.2
Yu, H.3
Wang, H.4
Zhang, Q.5
Zhu, M.6
-
149
-
-
84928949733
-
Nanopatterned textile-based wearable triboelectric nanogenerator
-
Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.-S., Lee, J.-H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.-W., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9 (2015), 3501–3509.
-
(2015)
ACS Nano
, vol.9
, pp. 3501-3509
-
-
Seung, W.1
Gupta, M.K.2
Lee, K.Y.3
Shin, K.-S.4
Lee, J.-H.5
Kim, T.Y.6
Kim, S.7
Lin, J.8
Kim, J.H.9
Kim, S.-W.10
-
150
-
-
84944453491
-
A skin-inspired organic digital mechanoreceptor
-
Tee, B.C.-K., Chortos, A., Berndt, A., Nguyen, A.K., Tom, A., McGuire, A., Lin, Z.C., Tien, K., Bae, W.-G., Wang, H., et al. A skin-inspired organic digital mechanoreceptor. Science 350 (2015), 313–316.
-
(2015)
Science
, vol.350
, pp. 313-316
-
-
Tee, B.C.-K.1
Chortos, A.2
Berndt, A.3
Nguyen, A.K.4
Tom, A.5
McGuire, A.6
Lin, Z.C.7
Tien, K.8
Bae, W.-G.9
Wang, H.10
-
151
-
-
84940062712
-
Wearable and implantable mechanical energy harvesters for self-powered biomedical systems
-
Hinchet, R., Kim, S.-W., Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 9 (2015), 7742–7745.
-
(2015)
ACS Nano
, vol.9
, pp. 7742-7745
-
-
Hinchet, R.1
Kim, S.-W.2
-
152
-
-
84989216745
-
Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability
-
Wu, H., Huang, Y., Xu, F., Duan, Y., Yin, Z., Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28 (2016), 9881–9919.
-
(2016)
Adv. Mater.
, vol.28
, pp. 9881-9919
-
-
Wu, H.1
Huang, Y.2
Xu, F.3
Duan, Y.4
Yin, Z.5
-
153
-
-
84979547081
-
Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics
-
Chu, H., Jang, H., Lee, Y., Chae, Y., Ahn, J.-H., Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 27 (2016), 298–305.
-
(2016)
Nano Energy
, vol.27
, pp. 298-305
-
-
Chu, H.1
Jang, H.2
Lee, Y.3
Chae, Y.4
Ahn, J.-H.5
-
154
-
-
84964200317
-
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
-
Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529 (2016), 509–514.
-
(2016)
Nature
, vol.529
, pp. 509-514
-
-
Gao, W.1
Emaminejad, S.2
Nyein, H.Y.Y.3
Challa, S.4
Chen, K.5
Peck, A.6
Fahad, H.M.7
Ota, H.8
Shiraki, H.9
Kiriya, D.10
-
155
-
-
84989261247
-
Sustainably powering wearable electronics solely by biomechanical energy
-
Wang, J., Li, S., Yi, F., Zi, Y., Lin, J., Wang, X., Xu, Y., Wang, Z.L., Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun., 7, 2016, 12744.
-
(2016)
Nat. Commun.
, vol.7
, pp. 12744
-
-
Wang, J.1
Li, S.2
Yi, F.3
Zi, Y.4
Lin, J.5
Wang, X.6
Xu, Y.7
Wang, Z.L.8
-
156
-
-
85008416630
-
A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
-
Yi, F., Wang, X., Niu, S., Li, S., Yin, Y., Dai, K., Zhang, G., Lin, L., Wen, Z., Guo, H., et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv., 2, 2016, e1501624.
-
(2016)
Sci. Adv.
, vol.2
, pp. e1501624
-
-
Yi, F.1
Wang, X.2
Niu, S.3
Li, S.4
Yin, Y.5
Dai, K.6
Zhang, G.7
Lin, L.8
Wen, Z.9
Guo, H.10
-
157
-
-
84941108760
-
Integrating perovskite solar cells into a flexible fiber
-
Qiu, L., Deng, J., Lu, X., Yang, Z., Peng, H., Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53 (2014), 10425–10428.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 10425-10428
-
-
Qiu, L.1
Deng, J.2
Lu, X.3
Yang, Z.4
Peng, H.5
-
158
-
-
84905727109
-
Weaving efficient polymer solar cell wires into flexible power textiles
-
Zhang, Z., Yang, Z., Wu, Z., Guan, G., Pan, S., Zhang, Y., Li, H., Deng, J., Sun, B., Peng, H., Weaving efficient polymer solar cell wires into flexible power textiles. Adv. Energy Mater, 4, 2014, 1301750.
-
(2014)
Adv. Energy Mater
, vol.4
, pp. 1301750
-
-
Zhang, Z.1
Yang, Z.2
Wu, Z.3
Guan, G.4
Pan, S.5
Zhang, Y.6
Li, H.7
Deng, J.8
Sun, B.9
Peng, H.10
-
159
-
-
84934977686
-
Highly Stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
-
Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.W., Wang, Z.L., Baik, J.M., Highly Stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9 (2015), 6394–6400.
-
(2015)
ACS Nano
, vol.9
, pp. 6394-6400
-
-
Kim, K.N.1
Chun, J.2
Kim, J.W.3
Lee, K.Y.4
Park, J.U.5
Kim, S.W.6
Wang, Z.L.7
Baik, J.M.8
-
160
-
-
64849103292
-
Solar power wires based on organic photovoltaic materials
-
Lee, M.R., Eckert, R.D., Forberich, K., Dennler, G., Brabec, C.J., Gaudiana, R.A., Solar power wires based on organic photovoltaic materials. Science 324 (2009), 232–235.
-
(2009)
Science
, vol.324
, pp. 232-235
-
-
Lee, M.R.1
Eckert, R.D.2
Forberich, K.3
Dennler, G.4
Brabec, C.J.5
Gaudiana, R.A.6
-
161
-
-
84933055359
-
Printable elastic conductors with a high conductivity for electronic textile applications
-
Matsuhisa, N., Kaltenbrunner, M., Yokota, T., Jinno, H., Kuribara, K., Sekitani, T., Someya, T., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun., 6, 2015, 7461.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7461
-
-
Matsuhisa, N.1
Kaltenbrunner, M.2
Yokota, T.3
Jinno, H.4
Kuribara, K.5
Sekitani, T.6
Someya, T.7
-
162
-
-
54949118371
-
A. Photovoltaics: solar cells on curtains
-
Fan, Z., Javey, A., A. Photovoltaics: solar cells on curtains. Nat. Mater. 7 (2008), 835–836.
-
(2008)
Nat. Mater.
, vol.7
, pp. 835-836
-
-
Fan, Z.1
Javey, A.2
-
163
-
-
54949116488
-
Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs
-
Yoon, J., Baca, A.J., Park, S.I., Elvikis, P., Geddes, J.B., Li, L., Kim, R.H., Xiao, J., Wang, S., Kim, T.-H., et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7 (2008), 907–915.
-
(2008)
Nat. Mater.
, vol.7
, pp. 907-915
-
-
Yoon, J.1
Baca, A.J.2
Park, S.I.3
Elvikis, P.4
Geddes, J.B.5
Li, L.6
Kim, R.H.7
Xiao, J.8
Wang, S.9
Kim, T.-H.10
-
164
-
-
84906272553
-
Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications
-
Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., Tao, X.-M., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26 (2014), 5310–5336.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5310-5336
-
-
Zeng, W.1
Shu, L.2
Li, Q.3
Chen, S.4
Wang, F.5
Tao, X.-M.6
-
165
-
-
0042819730
-
Technology-electronic textiles charge ahead
-
Service, R.F., Technology-electronic textiles charge ahead. Science 301 (2003), 909–911.
-
(2003)
Science
, vol.301
, pp. 909-911
-
-
Service, R.F.1
-
166
-
-
75749093027
-
Emerging applications of stimuli-responsive polymer materials
-
Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9 (2010), 101–113.
-
(2010)
Nat. Mater.
, vol.9
, pp. 101-113
-
-
Stuart, M.A.C.1
Huck, W.T.S.2
Genzer, J.3
Müller, M.4
Ober, C.5
Stamm, M.6
Sukhorukov, G.B.7
Szleifer, I.8
Tsukruk, V.V.9
Urban, M.10
-
167
-
-
84955411867
-
Wearable self-charging power-textile based on flexible yarn supercapacitors and fabric nanogenerators
-
Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., Hu, W., Wang, Z.L., Wearable self-charging power-textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28 (2016), 98–105.
-
(2016)
Adv. Mater.
, vol.28
, pp. 98-105
-
-
Pu, X.1
Li, L.2
Liu, M.3
Jiang, C.4
Du, C.5
Zhao, Z.6
Hu, W.7
Wang, Z.L.8
-
168
-
-
85027934180
-
A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
-
Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27 (2015), 2472–2478.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2472-2478
-
-
Pu, X.1
Li, L.2
Song, H.3
Du, C.4
Zhao, Z.5
Jiang, C.6
Cao, G.7
Hu, W.8
Wang, Z.L.9
-
169
-
-
84978699405
-
Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells
-
Pu, X., Song, W., Liu, M., Sun, C., Du, C., Jiang, C., Huang, X., Zou, D., Hu, W., Wang, Z.L., Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater, 6, 2016, 1601048.
-
(2016)
Adv. Energy Mater
, vol.6
, pp. 1601048
-
-
Pu, X.1
Song, W.2
Liu, M.3
Sun, C.4
Du, C.5
Jiang, C.6
Huang, X.7
Zou, D.8
Hu, W.9
Wang, Z.L.10
-
170
-
-
84960155799
-
Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions
-
Zhao, Z., Pu, X., Du, C., Li, L., Jiang, C., Hu, W., Wang, Z.L., Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 10 (2016), 1780–1787.
-
(2016)
ACS Nano
, vol.10
, pp. 1780-1787
-
-
Zhao, Z.1
Pu, X.2
Du, C.3
Li, L.4
Jiang, C.5
Hu, W.6
Wang, Z.L.7
-
171
-
-
84940666969
-
A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics
-
Wang, J., Li, X., Zi, Y., Wang, S., Li, Z., Zheng, L., Yi, F., Li, S., Wang, Z.L., A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27 (2015), 4830–4836.
-
(2015)
Adv. Mater.
, vol.27
, pp. 4830-4836
-
-
Wang, J.1
Li, X.2
Zi, Y.3
Wang, S.4
Li, Z.5
Zheng, L.6
Yi, F.7
Li, S.8
Wang, Z.L.9
-
172
-
-
85008380357
-
Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
-
Chen, J., Huang, Y., Zhang, N., Zou, H., Liu, R., Tao, C., Fan, X., Wang, Z.L., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy, 1, 2016, 16138.
-
(2016)
Nat. Energy
, vol.1
, pp. 16138
-
-
Chen, J.1
Huang, Y.2
Zhang, N.3
Zou, H.4
Liu, R.5
Tao, C.6
Fan, X.7
Wang, Z.L.8
-
173
-
-
47549088018
-
Wire-shaped flexible dye-sensitized solar cells
-
Fan, X., Chu, Z.Z., Wang, F.Z., Zhang, C., Chen, L., Tang, Y.W., Zou, D., Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20 (2008), 592–595.
-
(2008)
Adv. Mater.
, vol.20
, pp. 592-595
-
-
Fan, X.1
Chu, Z.Z.2
Wang, F.Z.3
Zhang, C.4
Chen, L.5
Tang, Y.W.6
Zou, D.7
-
174
-
-
80052235217
-
Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters
-
Fu, Y., Lv, Z., Hou, S., Wu, H., Wang, D., Zhang, C., Chu, Z., Cai, X., Fan, X., Wang, Z.L., et al. Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energy Environ. Sci. 4 (2011), 3379–3383.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3379-3383
-
-
Fu, Y.1
Lv, Z.2
Hou, S.3
Wu, H.4
Wang, D.5
Zhang, C.6
Chu, Z.7
Cai, X.8
Fan, X.9
Wang, Z.L.10
-
175
-
-
84875863968
-
Integrated power fiber for energy conversion and storage
-
Fu, Y., Wu, H., Ye, S., Cai, X., Yu, X., Hou, S., Kafafy, H., Zou, D., Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6 (2013), 805–812.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 805-812
-
-
Fu, Y.1
Wu, H.2
Ye, S.3
Cai, X.4
Yu, X.5
Hou, S.6
Kafafy, H.7
Zou, D.8
-
176
-
-
85042021256
-
Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
-
Wen, Z., Yeh, M.-H., Guo, H., Wang, J., Zi, Y., Xu, W., Deng, J., Zhu, L., Wang, X., Hu, C., et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv., 2, 2016, e1600097.
-
(2016)
Sci. Adv.
, vol.2
, pp. e1600097
-
-
Wen, Z.1
Yeh, M.-H.2
Guo, H.3
Wang, J.4
Zi, Y.5
Xu, W.6
Deng, J.7
Zhu, L.8
Wang, X.9
Hu, C.10
-
177
-
-
84905462863
-
Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells
-
Pan, S., Yang, Z., Chen, P., Fang, X., Guan, G., Zhang, Z., Deng, J., Peng, H., Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells. J. Phys. Chem. C 118 (2014), 16419–16425.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 16419-16425
-
-
Pan, S.1
Yang, Z.2
Chen, P.3
Fang, X.4
Guan, G.5
Zhang, Z.6
Deng, J.7
Peng, H.8
-
178
-
-
84936749019
-
2 nanowires and 3-dimensional design for photo-catalytic applications
-
2 nanowires and 3-dimensional design for photo-catalytic applications. Sci. Rep., 5, 2015, 11933.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11933
-
-
Park, J.1
Lee, J.W.2
Ye, B.U.3
Chun, S.H.4
Joo, S.H.5
Park, H.6
Lee, H.7
Jeong, H.Y.8
Kim, M.H.9
Baik, J.M.10
-
179
-
-
78049352004
-
Sound-driven piezoelectric nanowire-based nanogenerators
-
Cha, S.N., Seo, J.-S., Kim, S.M., Kim, H., Park, Y.J., Kim, S., Kim, J.M., Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22 (2010), 4726–4730.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4726-4730
-
-
Cha, S.N.1
Seo, J.-S.2
Kim, S.M.3
Kim, H.4
Park, Y.J.5
Kim, S.6
Kim, J.M.7
-
180
-
-
77955548078
-
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
-
Hansen, B.J., Liu, Y., Yang, R., Wang, Z.L., Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4 (2010), 3647–3652.
-
(2010)
ACS Nano
, vol.4
, pp. 3647-3652
-
-
Hansen, B.J.1
Liu, Y.2
Yang, R.3
Wang, Z.L.4
-
181
-
-
84861490484
-
Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting
-
Que, R., Shao, Q., Li, Q., Shao, M., Cai, S., Wang, S., Lee, S.-T., Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting. Angew. Chem. Int. Ed. 51 (2012), 5418–5422.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 5418-5422
-
-
Que, R.1
Shao, Q.2
Li, Q.3
Shao, M.4
Cai, S.5
Wang, S.6
Lee, S.-T.7
-
182
-
-
34547578774
-
A micro electromagnetic generator for vibration energy harvesting
-
Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’ Donnell, T., Saha, C.R., Roy, S., A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17 (2007), 1257–1265.
-
(2007)
J. Micromech. Microeng.
, vol.17
, pp. 1257-1265
-
-
Beeby, S.P.1
Torah, R.N.2
Tudor, M.J.3
Glynne-Jones, P.4
O’ Donnell, T.5
Saha, C.R.6
Roy, S.7
-
183
-
-
84902203625
-
Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
-
Zhang, C., Tang, W., Han, C., Fan, F., Wang, Z.L., Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26 (2014), 3580–3591.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3580-3591
-
-
Zhang, C.1
Tang, W.2
Han, C.3
Fan, F.4
Wang, Z.L.5
-
184
-
-
85021305452
-
Toward the blue energy dream by triboelectric nanogenerator networks
-
Wang, Z.L., Jiang, T., Xu, L., Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39 (2017), 9–23.
-
(2017)
Nano Energy
, vol.39
, pp. 9-23
-
-
Wang, Z.L.1
Jiang, T.2
Xu, L.3
-
185
-
-
84968817645
-
Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
-
Zi, Y., Guo, H., Wen, Z., Yeh, M.H., Hu, C., Wang, Z.L., Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10 (2016), 4797–4805.
-
(2016)
ACS Nano
, vol.10
, pp. 4797-4805
-
-
Zi, Y.1
Guo, H.2
Wen, Z.3
Yeh, M.H.4
Hu, C.5
Wang, Z.L.6
-
186
-
-
0012698358
-
The development and performance of an electrostatic generator operating under high air pressure
-
Herb, R.G., Parkinson, D.B., Kerst, D.W., The development and performance of an electrostatic generator operating under high air pressure. Phys. Rev. 51 (1937), 75–83.
-
(1937)
Phys. Rev.
, vol.51
, pp. 75-83
-
-
Herb, R.G.1
Parkinson, D.B.2
Kerst, D.W.3
-
187
-
-
84872464321
-
Progress in nanogenerators for portable electronics
-
Wang, Z.L., Zhu, G., Yang, Y., Wang, S., Pan, C., Progress in nanogenerators for portable electronics. Mater. Today 15 (2012), 532–543.
-
(2012)
Mater. Today
, vol.15
, pp. 532-543
-
-
Wang, Z.L.1
Zhu, G.2
Yang, Y.3
Wang, S.4
Pan, C.5
-
188
-
-
5744241231
-
A piezoelectric vibration based generator for wireless electronics
-
Roundy, S., Wright, P.K., A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13 (2004), 1131–1142.
-
(2004)
Smart Mater. Struct.
, vol.13
, pp. 1131-1142
-
-
Roundy, S.1
Wright, P.K.2
-
189
-
-
84906875531
-
In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
-
Zheng, Q., Shi, B., Fan, F., Wang, X., Yan, L., Yuan, W., Wang, S., Liu, H., Li, Z., Wang, Z.L., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26 (2014), 5851–5856.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5851-5856
-
-
Zheng, Q.1
Shi, B.2
Fan, F.3
Wang, X.4
Yan, L.5
Yuan, W.6
Wang, S.7
Liu, H.8
Li, Z.9
Wang, Z.L.10
-
190
-
-
85016603540
-
Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems
-
Zheng, Q., Shi, B., Li, Z., Wang, Z.L., Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci., 4, 2017, 1700029.
-
(2017)
Adv. Sci.
, vol.4
, pp. 1700029
-
-
Zheng, Q.1
Shi, B.2
Li, Z.3
Wang, Z.L.4
-
191
-
-
84975254760
-
Biodegradable triboelectric nanogenerator as a life-time designed implantable power source
-
Zheng, Q., Zou, Y., Zhang, Y., Liu, Z., Shi, B., Wang, X., Jin, Y., Ouyang, H., Li, Z., Wang, Z.L., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv., 2, 2016, e1501478.
-
(2016)
Sci. Adv.
, vol.2
, pp. e1501478
-
-
Zheng, Q.1
Zou, Y.2
Zhang, Y.3
Liu, Z.4
Shi, B.5
Wang, X.6
Jin, Y.7
Ouyang, H.8
Li, Z.9
Wang, Z.L.10
-
192
-
-
84980000120
-
In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator
-
Zheng, Q., Zhang, H., Shi, B., Xue, X., Liu, Z., Jin, Y., Ma, Y., Zou, Y., Wang, X., An, Z., et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10 (2016), 6510–6518.
-
(2016)
ACS Nano
, vol.10
, pp. 6510-6518
-
-
Zheng, Q.1
Zhang, H.2
Shi, B.3
Xue, X.4
Liu, Z.5
Jin, Y.6
Ma, Y.7
Zou, Y.8
Wang, X.9
An, Z.10
-
193
-
-
84991628034
-
Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring
-
Ma, Y., Zheng, Q., Liu, Y., Shi, B., Xue, X., Ji, W., Liu, Z., Jin, Y., Zou, Y., An, Z., et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16 (2016), 6042–6051.
-
(2016)
Nano Lett.
, vol.16
, pp. 6042-6051
-
-
Ma, Y.1
Zheng, Q.2
Liu, Y.3
Shi, B.4
Xue, X.5
Ji, W.6
Liu, Z.7
Jin, Y.8
Zou, Y.9
An, Z.10
-
194
-
-
0027906701
-
Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions
-
Horn, R.G., Smith, D.T., Grabbe, A., Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 366 (1993), 442–443.
-
(1993)
Nature
, vol.366
, pp. 442-443
-
-
Horn, R.G.1
Smith, D.T.2
Grabbe, A.3
-
195
-
-
0026843217
-
Contact electrification and adhesion between dissimilar materials
-
Horn, R.G., Smith, D.T., Contact electrification and adhesion between dissimilar materials. Science 256 (1992), 362–364.
-
(1992)
Science
, vol.256
, pp. 362-364
-
-
Horn, R.G.1
Smith, D.T.2
-
196
-
-
79960559930
-
The mosaic surface charge in contact electrification
-
Baytekin, H.T., Patashinskii, A.I., Branicki, M., Baytekin, B., Grzybowski, B.A., The mosaic surface charge in contact electrification. Science 333 (2011), 308–312.
-
(2011)
Science
, vol.333
, pp. 308-312
-
-
Baytekin, H.T.1
Patashinskii, A.I.2
Branicki, M.3
Baytekin, B.4
Grzybowski, B.A.5
-
197
-
-
0019078518
-
Contact electrification
-
Lowell, J., Roseinnes, A.C., Contact electrification. Adv. Phys. 29 (1980), 947–1023.
-
(1980)
Adv. Phys.
, vol.29
, pp. 947-1023
-
-
Lowell, J.1
Roseinnes, A.C.2
-
198
-
-
4744353156
-
A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties
-
Diaz, A.F., Felix-Navarrro, R.M., A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrost 62 (2004), 227–290.
-
(2004)
J. Electrost
, vol.62
, pp. 227-290
-
-
Diaz, A.F.1
Felix-Navarrro, R.M.2
-
199
-
-
84878890202
-
Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics
-
Yang, Y., Zhang, H., Chen, J., Lee, S., Hou, T.-C., Wang, Z.L., Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6 (2013), 1744–1749.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1744-1749
-
-
Yang, Y.1
Zhang, H.2
Chen, J.3
Lee, S.4
Hou, T.-C.5
Wang, Z.L.6
-
200
-
-
84959441162
-
A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices
-
Zhu, Y., Yang, B., Liu, J., Wang, X., Wang, L., Chen, X., Yang, C., A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep., 6, 2016, 22233.
-
(2016)
Sci. Rep.
, vol.6
, pp. 22233
-
-
Zhu, Y.1
Yang, B.2
Liu, J.3
Wang, X.4
Wang, L.5
Chen, X.6
Yang, C.7
-
201
-
-
84988416288
-
Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film
-
He, X., Mu, X., Wen, Q., Wen, Z., Yang, J., Hu, C., Shi, H., Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 9 (2016), 3714–3724.
-
(2016)
Nano Res.
, vol.9
, pp. 3714-3724
-
-
He, X.1
Mu, X.2
Wen, Q.3
Wen, Z.4
Yang, J.5
Hu, C.6
Shi, H.7
-
202
-
-
70349861895
-
Controlled growth of aligned polymer nanowires
-
Fang, H., Wu, W., Song, J., Wang, Z.L., Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 113 (2009), 16571–16574.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 16571-16574
-
-
Fang, H.1
Wu, W.2
Song, J.3
Wang, Z.L.4
-
203
-
-
84884973039
-
Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
-
Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z.L., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7 (2013), 8266–8274.
-
(2013)
ACS Nano
, vol.7
, pp. 8266-8274
-
-
Lin, L.1
Xie, Y.2
Wang, S.3
Wu, W.4
Niu, S.5
Wen, X.6
Wang, Z.L.7
-
204
-
-
84916597286
-
Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
-
Jeong, C.K., Baek, K.M., Niu, S., Nam, T.W., Hur, Y.H., Park, D.Y., Hwang, G.-T., Byun, M., Wang, Z.L., Jung, Y.S., et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14 (2014), 7031–7038.
-
(2014)
Nano Lett.
, vol.14
, pp. 7031-7038
-
-
Jeong, C.K.1
Baek, K.M.2
Niu, S.3
Nam, T.W.4
Hur, Y.H.5
Park, D.Y.6
Hwang, G.-T.7
Byun, M.8
Wang, Z.L.9
Jung, Y.S.10
-
205
-
-
84989332698
-
A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator
-
Zhao, L., Zheng, Q., Ouyang, H., Li, H., Yan, L., Shi, B., Li, Z., A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28 (2016), 172–178.
-
(2016)
Nano Energy
, vol.28
, pp. 172-178
-
-
Zhao, L.1
Zheng, Q.2
Ouyang, H.3
Li, H.4
Yan, L.5
Shi, B.6
Li, Z.7
-
206
-
-
84960968279
-
Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development
-
Yu, Y., Wang, X., Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9 (2017), 514–530.
-
(2017)
Extreme Mech. Lett.
, vol.9
, pp. 514-530
-
-
Yu, Y.1
Wang, X.2
-
207
-
-
84928978916
-
Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators
-
Shin, S.-H., Kwon, Y.H., Kim, Y.-H., Jung, J.-Y., Lee, M.H., Nah, J., Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9 (2015), 4621–4627.
-
(2015)
ACS Nano
, vol.9
, pp. 4621-4627
-
-
Shin, S.-H.1
Kwon, Y.H.2
Kim, Y.-H.3
Jung, J.-Y.4
Lee, M.H.5
Nah, J.6
-
208
-
-
84892856965
-
High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
-
Zhang, X.-S., Han, M.-D., Wang, R.-X., Meng, B., Zhu, F.-Y., Sun, X.-M., Hu, W., Wang, W., Li, Z.-H., Zhang, H.-X., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4 (2014), 123–131.
-
(2014)
Nano Energy
, vol.4
, pp. 123-131
-
-
Zhang, X.-S.1
Han, M.-D.2
Wang, R.-X.3
Meng, B.4
Zhu, F.-Y.5
Sun, X.-M.6
Hu, W.7
Wang, W.8
Li, Z.-H.9
Zhang, H.-X.10
-
210
-
-
84941736871
-
Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy
-
Li, H.Y., Su, L., Kuang, S.Y., Pan, C.F., Zhu, G., Wang, Z.L., Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 25 (2015), 5691–5697.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 5691-5697
-
-
Li, H.Y.1
Su, L.2
Kuang, S.Y.3
Pan, C.F.4
Zhu, G.5
Wang, Z.L.6
-
211
-
-
84954046440
-
Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator
-
Cheng, X., Meng, B., Chen, X., Han, M., Chen, H., Su, Z., Shi, M., Zhang, H., Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 12 (2016), 229–236.
-
(2016)
Small
, vol.12
, pp. 229-236
-
-
Cheng, X.1
Meng, B.2
Chen, X.3
Han, M.4
Chen, H.5
Su, Z.6
Shi, M.7
Zhang, H.8
-
212
-
-
85027923006
-
Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
-
Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., Wang, Z.L., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26 (2014), 6720–6728.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6720-6728
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Liu, C.5
Zhou, Y.S.6
Wang, Z.L.7
-
213
-
-
84940703473
-
Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development
-
Yu, Y., Li, Z., Wang, Y., Gong, S., Wang, X., Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv. Mater. 27 (2015), 4938–4944.
-
(2015)
Adv. Mater.
, vol.27
, pp. 4938-4944
-
-
Yu, Y.1
Li, Z.2
Wang, Y.3
Gong, S.4
Wang, X.5
-
214
-
-
84930617585
-
An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment
-
Guo, H., Chen, J., Yeh, M.-H., Fan, X., Wen, Z., Li, Z., Hu, C., Wang, Z.L., An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 9 (2015), 5577–5584.
-
(2015)
ACS Nano
, vol.9
, pp. 5577-5584
-
-
Guo, H.1
Chen, J.2
Yeh, M.-H.3
Fan, X.4
Wen, Z.5
Li, Z.6
Hu, C.7
Wang, Z.L.8
-
215
-
-
84938154154
-
Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
-
Li, S., Wang, S., Zi, Y., Wen, Z., Lin, L., Zhang, G., Wang, Z.L., Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 9 (2015), 7479–7487.
-
(2015)
ACS Nano
, vol.9
, pp. 7479-7487
-
-
Li, S.1
Wang, S.2
Zi, Y.3
Wen, Z.4
Lin, L.5
Zhang, G.6
Wang, Z.L.7
-
216
-
-
84921796194
-
Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
-
Lin, L., Xie, Y., Niu, S., Wang, S., Yang, P.-K., Wang, Z.L., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%. ACS Nano 9 (2015), 922–930.
-
(2015)
ACS Nano
, vol.9
, pp. 922-930
-
-
Lin, L.1
Xie, Y.2
Niu, S.3
Wang, S.4
Yang, P.-K.5
Wang, Z.L.6
-
217
-
-
44349187381
-
Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets
-
McCarty, L.S., Whitesides, G.M., Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47 (2008), 2188–2207.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2188-2207
-
-
McCarty, L.S.1
Whitesides, G.M.2
-
218
-
-
84870929440
-
Contact de-electrification of electrostatically charged polymers
-
Soh, S., Kwok, S.W., Liu, H., Whitesides, G.M., Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 134 (2012), 20151–20159.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20151-20159
-
-
Soh, S.1
Kwok, S.W.2
Liu, H.3
Whitesides, G.M.4
-
219
-
-
84879112977
-
In situ quantitative study of nanoscale triboelectrification and patterning
-
Zhou, Y.S., Liu, Y., Zhu, G., Lin, Z.-H., Pan, C., Jing, Q., Wang, Z.L., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13 (2013), 2771–2776.
-
(2013)
Nano Lett.
, vol.13
, pp. 2771-2776
-
-
Zhou, Y.S.1
Liu, Y.2
Zhu, G.3
Lin, Z.-H.4
Pan, C.5
Jing, Q.6
Wang, Z.L.7
-
220
-
-
84896361710
-
Manipulating nanoscale contact electrification by an applied electric field
-
Zhou, Y.S., Wang, S., Yang, Y., Zhu, G., Niu, S., Lin, Z.-H., Liu, Y., Wang, Z.L., Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 14 (2014), 1567–1572.
-
(2014)
Nano Lett.
, vol.14
, pp. 1567-1572
-
-
Zhou, Y.S.1
Wang, S.2
Yang, Y.3
Zhu, G.4
Niu, S.5
Lin, Z.-H.6
Liu, Y.7
Wang, Z.L.8
-
221
-
-
85025457008
-
Achieving ultrahigh triboelectric charge density for efficient energy harvesting
-
Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., Wang, Z.L., Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun., 8, 2017, 88.
-
(2017)
Nat. Commun.
, vol.8
, pp. 88
-
-
Wang, J.1
Wu, C.2
Dai, Y.3
Zhao, Z.4
Wang, A.5
Zhang, T.6
Wang, Z.L.7
-
222
-
-
84925688266
-
Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
-
Chen, J., Yang, J., Li, Z., Fan, X., Zi, Y., Jing, Q., Guo, H., Wen, Z., Pradel, K.C., Niu, S., et al. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9 (2015), 3324–3331.
-
(2015)
ACS Nano
, vol.9
, pp. 3324-3331
-
-
Chen, J.1
Yang, J.2
Li, Z.3
Fan, X.4
Zi, Y.5
Jing, Q.6
Guo, H.7
Wen, Z.8
Pradel, K.C.9
Niu, S.10
-
223
-
-
84906241244
-
Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors
-
Yu, Y., Yan, C., Zheng, Z., Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv. Mater. 26 (2014), 5508–5516.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5508-5516
-
-
Yu, Y.1
Yan, C.2
Zheng, Z.3
-
224
-
-
84884328432
-
Effect of humidity and pressure on the triboelectric nanogenerator
-
Nguyen, V., Yang, R., Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2 (2013), 604–608.
-
(2013)
Nano Energy
, vol.2
, pp. 604-608
-
-
Nguyen, V.1
Yang, R.2
-
225
-
-
84946489058
-
Environmental effects on nanogenerators
-
Nguyen, V., Zhu, R., Yang, R., Environmental effects on nanogenerators. Nano Energy 14 (2015), 49–61.
-
(2015)
Nano Energy
, vol.14
, pp. 49-61
-
-
Nguyen, V.1
Zhu, R.2
Yang, R.3
-
226
-
-
84893395881
-
Applicability of triboelectric generator over a wide range of temperature
-
Wen, X., Su, Y., Yang, Y., Zhang, H., Wang, Z.L., Applicability of triboelectric generator over a wide range of temperature. Nano Energy 4 (2014), 150–156.
-
(2014)
Nano Energy
, vol.4
, pp. 150-156
-
-
Wen, X.1
Su, Y.2
Yang, Y.3
Zhang, H.4
Wang, Z.L.5
|