-
1
-
-
84858142463
-
Flexible triboelectric generator
-
[1] Fan, F.-R., Tian, Z.-Q., Lin Wang, Z., Flexible triboelectric generator. Nano Energy 1 (2012), 328–334.
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.-R.1
Tian, Z.-Q.2
Lin Wang, Z.3
-
2
-
-
84924743446
-
Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives
-
[2] Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Faraday Discuss 176 (2014), 447–458.
-
(2014)
Faraday Discuss
, vol.176
, pp. 447-458
-
-
Wang, Z.L.1
-
3
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
[3] Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8 (2015), 2250–2282.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
4
-
-
84937251618
-
Recent progress on flexible triboelectric nanogenerators for selfpowered electronics
-
[4] Hinchet, R., Seung, W., Kim, S.-W., Recent progress on flexible triboelectric nanogenerators for selfpowered electronics. ChemSusChem 8 (2015), 2327–2344.
-
(2015)
ChemSusChem
, vol.8
, pp. 2327-2344
-
-
Hinchet, R.1
Seung, W.2
Kim, S.-W.3
-
5
-
-
85008380357
-
Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
-
[5] Chen, J., Huang, Y., Zhang, N., Zou, H., Liu, R., Tao, C., Fan, X., Wang, Z.L., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy, 1, 2016, 16138.
-
(2016)
Nat. Energy
, vol.1
, pp. 16138
-
-
Chen, J.1
Huang, Y.2
Zhang, N.3
Zou, H.4
Liu, R.5
Tao, C.6
Fan, X.7
Wang, Z.L.8
-
6
-
-
84949604267
-
A universal self-charging System driven by random biomechanical energy for sustainable operation of mobile electronics
-
[6] Niu, S., Wang, X., Yi, F., Zhou, Y.S., Wang, Z.L., A universal self-charging System driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun., 6, 2015, 8975.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8975
-
-
Niu, S.1
Wang, X.2
Yi, F.3
Zhou, Y.S.4
Wang, Z.L.5
-
7
-
-
84934977686
-
Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
-
[7] Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.-U., Kim, S.-W., Wang, Z.L., Baik, J.M., Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9 (2015), 6394–6400.
-
(2015)
ACS Nano
, vol.9
, pp. 6394-6400
-
-
Kim, K.N.1
Chun, J.2
Kim, J.W.3
Lee, K.Y.4
Park, J.-U.5
Kim, S.-W.6
Wang, Z.L.7
Baik, J.M.8
-
8
-
-
84979915623
-
Triboelectric nanogenerators for blue energy harvesting
-
[8] Khan, U., Kim, S.-W., Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10 (2016), 6429–6432.
-
(2016)
ACS Nano
, vol.10
, pp. 6429-6432
-
-
Khan, U.1
Kim, S.-W.2
-
9
-
-
84940047542
-
Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
-
[9] Seol, M.-L., Woo, J.-H., Jeon, S.-B., Kim, D., Park, S.-J., Hur, J., Choi, Y.-K., Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14 (2015), 201–208.
-
(2015)
Nano Energy
, vol.14
, pp. 201-208
-
-
Seol, M.-L.1
Woo, J.-H.2
Jeon, S.-B.3
Kim, D.4
Park, S.-J.5
Hur, J.6
Choi, Y.-K.7
-
10
-
-
84989261247
-
Sustainably powering wearable electronics solely by biomechanical energy
-
[10] Wang, J., Li, S., Yi, F., Zi, Y., Lin, J., Wang, X., Xu, Y., Wang, Z.L., Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun., 7, 2016, 12744.
-
(2016)
Nat. Commun.
, vol.7
, pp. 12744
-
-
Wang, J.1
Li, S.2
Yi, F.3
Zi, Y.4
Lin, J.5
Wang, X.6
Xu, Y.7
Wang, Z.L.8
-
11
-
-
84967144002
-
Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns
-
[11] Wu, C., Wang, X., Lin, L., Guo, H., Wang, Z.L., Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10 (2016), 4652–4659.
-
(2016)
ACS Nano
, vol.10
, pp. 4652-4659
-
-
Wu, C.1
Wang, X.2
Lin, L.3
Guo, H.4
Wang, Z.L.5
-
12
-
-
84884973039
-
Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
-
[12] Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z.L., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7 (2013), 8266–8274.
-
(2013)
ACS Nano
, vol.7
, pp. 8266-8274
-
-
Lin, L.1
Xie, Y.2
Wang, S.3
Wu, W.4
Niu, S.5
Wen, X.6
Wang, Z.L.7
-
13
-
-
0031073499
-
-
D.Friedman, H.Heinrich, D.W.Duan, A low-power CMOS integrated circuit for field-powered radio frequency identification tags, in: Proceedings of the 1997 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 43rd ISSCC.
-
[13] D.Friedman, H.Heinrich, D.W.Duan, A low-power CMOS integrated circuit for field-powered radio frequency identification tags, in: Proceedings of the 1997 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 43rd ISSCC., 1997, pp. 294–295.
-
(1997)
, pp. 294-295
-
-
-
14
-
-
33244483622
-
Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid
-
[14] Chinchilla, M., Arnaltes, S., Burgos, J.C., Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. Energy Convers. 21 (2006), 130–135.
-
(2006)
IEEE Trans. Energy Convers.
, vol.21
, pp. 130-135
-
-
Chinchilla, M.1
Arnaltes, S.2
Burgos, J.C.3
-
15
-
-
0141638466
-
Green power: what is it and where can we find it?
-
[15] Rahman, S., Green power: what is it and where can we find it?. IEEE Power Energy Mag. 1 (2003), 30–37.
-
(2003)
IEEE Power Energy Mag.
, vol.1
, pp. 30-37
-
-
Rahman, S.1
-
16
-
-
84968817645
-
Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
-
[16] Zi, Y., Guo, H., Wen, Z., Yeh, M.-H., Hu, C., Wang, Z.L., Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10 (2016), 4797–4805.
-
(2016)
ACS Nano
, vol.10
, pp. 4797-4805
-
-
Zi, Y.1
Guo, H.2
Wen, Z.3
Yeh, M.-H.4
Hu, C.5
Wang, Z.L.6
-
17
-
-
3042743887
-
-
H.Kulah, K.Najafi, An electromagnetic micro power generator for low-frequency environmental vibrations, in: Proceedings of the 17th IEEE International Conference on. (MEMS)
-
[17] H.Kulah, K.Najafi, An electromagnetic micro power generator for low-frequency environmental vibrations, in: Proceedings of the 17th IEEE International Conference on. (MEMS), 2004, pp. 237–240.
-
(2004)
, pp. 237-240
-
-
-
18
-
-
84878368187
-
-
H.-J.Jung, I.-H.Kim, D.Y.Min, S.-H.Sim, J.-H.Koo, A hybrid electromagnetic energy harvesting device for low frequency vibration, in: Proceedings of the SPIE 8688, Active and Passive Smart Structures and Integrated Systems
-
[18] H.-J.Jung, I.-H.Kim, D.Y.Min, S.-H.Sim, J.-H.Koo, A hybrid electromagnetic energy harvesting device for low frequency vibration, in: Proceedings of the SPIE 8688, Active and Passive Smart Structures and Integrated Systems, 2013, p. 868811.
-
(2013)
, pp. 868811
-
-
-
19
-
-
84878374832
-
-
S.Palagummi, F.G.Yuan, A vibration energy harvester using diamagnetic levitation, in: Proceedings of the SPIE 8688, Active and Passive Smart Structures and Integrated Systems
-
[19] S.Palagummi, F.G.Yuan, A vibration energy harvester using diamagnetic levitation, in: Proceedings of the SPIE 8688, Active and Passive Smart Structures and Integrated Systems, 2013, p. 86880N.
-
(2013)
, pp. 86880N
-
-
-
20
-
-
84900475725
-
Broadband vibrational energy harvesting based on a triboelectric nanogenerator
-
[20] Yang, J., Chen, J., Yang, Y., Zhang, H., Yang, W., Bai, P., Su, Y., Wang, Z.L., Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater., 4, 2014, 1301322.
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1301322
-
-
Yang, J.1
Chen, J.2
Yang, Y.3
Zhang, H.4
Yang, W.5
Bai, P.6
Su, Y.7
Wang, Z.L.8
-
21
-
-
84887481607
-
Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a
-
[21] Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.-C., Wang, Z.L., Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a. Adv. Mater. 25 (2013), 6094–6099.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6094-6099
-
-
Chen, J.1
Zhu, G.2
Yang, W.3
Jing, Q.4
Bai, P.5
Yang, Y.6
Hou, T.-C.7
Wang, Z.L.8
-
22
-
-
84919709352
-
Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator
-
[22] Wang, S., Niu, S., Yang, J., Lin, L., Wang, Z.L., Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8 (2014), 12004–12013.
-
(2014)
ACS Nano
, vol.8
, pp. 12004-12013
-
-
Wang, S.1
Niu, S.2
Yang, J.3
Lin, L.4
Wang, Z.L.5
-
23
-
-
84893395073
-
Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier
-
[23] Moss, S.D., Hart, G.A., Burke, S.K., Carman, G.P., Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier. Appl. Phys. Lett., 104, 2014, 033506.
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 033506
-
-
Moss, S.D.1
Hart, G.A.2
Burke, S.K.3
Carman, G.P.4
-
24
-
-
84893529704
-
Enhanced vibrational energy harvester based on velocity amplification
-
[24] Cottone, F., Frizzell, R., Goyal, S., Kelly, G., Punch, J., Enhanced vibrational energy harvester based on velocity amplification. J. Intell. Mater. Syst. Struct. 25 (2014), 443–451.
-
(2014)
J. Intell. Mater. Syst. Struct.
, vol.25
, pp. 443-451
-
-
Cottone, F.1
Frizzell, R.2
Goyal, S.3
Kelly, G.4
Punch, J.5
-
25
-
-
78649421872
-
A vibration-based electromagnetic energy harvester using mechanical frequency Up-conversion method
-
[25] Zorlu, Ö., Topal, E.T., Kulah, H., A vibration-based electromagnetic energy harvester using mechanical frequency Up-conversion method. IEEE Sens. J. 11 (2011), 481–488.
-
(2011)
IEEE Sens. J.
, vol.11
, pp. 481-488
-
-
Zorlu, Ö.1
Topal, E.T.2
Kulah, H.3
-
26
-
-
84891819492
-
frequency Up-converted low frequency vibration energy harvester using trampoline effect
-
[26] Ju, S., Chae, S.H., Choi, Y., Jun, S., Park, S.M., Lee, S., Lee, H.W., Ji, C.H., frequency Up-converted low frequency vibration energy harvester using trampoline effect. J. Phys.: Conf. Ser., 476, 2013, 012089.
-
(2013)
J. Phys.: Conf. Ser.
, vol.476
, pp. 012089
-
-
Ju, S.1
Chae, S.H.2
Choi, Y.3
Jun, S.4
Park, S.M.5
Lee, S.6
Lee, H.W.7
Ji, C.H.8
-
27
-
-
57649215361
-
The dynamics of multiple pair-wise collisions in a chain for designing optimal shock amplifiers
-
[27] Rodgers, B., Goyal, S., Kelly, G., Sheehy, M., The dynamics of multiple pair-wise collisions in a chain for designing optimal shock amplifiers. Shock Vib. 16 (2009), 99–116.
-
(2009)
Shock Vib.
, vol.16
, pp. 99-116
-
-
Rodgers, B.1
Goyal, S.2
Kelly, G.3
Sheehy, M.4
-
28
-
-
84966297476
-
The influence of mass configurations on velocity amplified vibrational energy harvesters
-
[28] O'Donoghue, D., Frizzell, R., Kelly, G., Nolan, K., Punch, J., The influence of mass configurations on velocity amplified vibrational energy harvesters. Smart Mater. Struct., 25, 2016, 055012.
-
(2016)
Smart Mater. Struct.
, vol.25
, pp. 055012
-
-
O'Donoghue, D.1
Frizzell, R.2
Kelly, G.3
Nolan, K.4
Punch, J.5
-
29
-
-
84921796194
-
Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
-
[29] Lin, L., Xie, Y., Niu, S., Wang, S., Yang, P.-K., Wang, Z.L., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%. ACS Nano 9 (2015), 922–930.
-
(2015)
ACS Nano
, vol.9
, pp. 922-930
-
-
Lin, L.1
Xie, Y.2
Niu, S.3
Wang, S.4
Yang, P.-K.5
Wang, Z.L.6
-
30
-
-
85027947338
-
A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator
-
[30] Kanik, M., Say, M.G., Daglar, B., Yavuz, A.F., Dolas, M.H., El-Ashry, M.M., Bayindir, M., A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 27 (2015), 2367–2376.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2367-2376
-
-
Kanik, M.1
Say, M.G.2
Daglar, B.3
Yavuz, A.F.4
Dolas, M.H.5
El-Ashry, M.M.6
Bayindir, M.7
-
31
-
-
84895830368
-
Radial-arrayed rotary electrification for high performance triboelectric generator
-
[31] Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L., Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun., 5, 2014, 3426.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3426
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
32
-
-
84883243068
-
Pulsed nanogenerator with huge instantaneous output power density
-
[32] Cheng, G., Lin, Z.-H., Lin, L., Du, Z.-l., Wang, Z.L., Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7 (2013), 7383–7391.
-
(2013)
ACS Nano
, vol.7
, pp. 7383-7391
-
-
Cheng, G.1
Lin, Z.-H.2
Lin, L.3
Du, Z.-L.4
Wang, Z.L.5
-
33
-
-
84942627279
-
Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
-
[33] Zi, Y., Niu, S., Wang, J., Wen, Z., Tang, W., Wang, Z.L., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun., 6, 2015, 8376.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8376
-
-
Zi, Y.1
Niu, S.2
Wang, J.3
Wen, Z.4
Tang, W.5
Wang, Z.L.6
-
34
-
-
84960920281
-
Effective energy storage from a triboelectric nanogenerator
-
[34] Zi, Y., Wang, J., Wang, S., Li, S., Wen, Z., Guo, H., Wang, Z.L., Effective energy storage from a triboelectric nanogenerator. Nat. Commun., 7, 2016, 10987.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10987
-
-
Zi, Y.1
Wang, J.2
Wang, S.3
Li, S.4
Wen, Z.5
Guo, H.6
Wang, Z.L.7
|