-
1
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
[1] Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7 (2013), 9533–9557.
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
2
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
[2] Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8 (2015), 2250–2282.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
3
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
[3] Wang, Z.L., Song, J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312 (2006), 242–246.
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
4
-
-
84900483613
-
Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems
-
130624
-
[4] Mao, Y., Zhao, P., McConohy, G., Yang, H., Tong, Y., Wang, X., Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater., 4, 2014, 130624.
-
(2014)
Adv. Energy Mater.
, vol.4
-
-
Mao, Y.1
Zhao, P.2
McConohy, G.3
Yang, H.4
Tong, Y.5
Wang, X.6
-
5
-
-
84861832877
-
3 nanoparticles and graphitic carbons
-
3 nanoparticles and graphitic carbons. Adv. Mater. 24 (2012), 2999–3004.
-
(2012)
Adv. Mater.
, vol.24
, pp. 2999-3004
-
-
Park, K.I.1
Lee, M.2
Liu, Y.3
Moon, S.4
Hwang, G.T.5
Zhu, G.6
Kim, J.E.7
Kim, S.O.8
Kim do, K.9
Wang, Z.L.10
Lee, K.J.11
-
6
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
[6] Wang, X., Song, J., Liu, J., Wang, Z.L., Direct-current nanogenerator driven by ultrasonic waves. Science 316 (2007), 102–105.
-
(2007)
Science
, vol.316
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
Wang, Z.L.4
-
7
-
-
78049352004
-
Sound-driven piezoelectric nanowire-based nanogenerators
-
[7] Cha, S.N., Seo, J.S., Kim, S.M., Kim, H.J., Park, Y.J., Kim, S.W., Kim, J.M., Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22 (2010), 4726–4730.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4726-4730
-
-
Cha, S.N.1
Seo, J.S.2
Kim, S.M.3
Kim, H.J.4
Park, Y.J.5
Kim, S.W.6
Kim, J.M.7
-
8
-
-
84863116422
-
Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale
-
[8] Wang, X., Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1 (2012), 13–24.
-
(2012)
Nano Energy
, vol.1
, pp. 13-24
-
-
Wang, X.1
-
9
-
-
84871266723
-
Highly sensitive stretchable transparent piezoelectric nanogenerators
-
[9] Lee, J.-H., Lee, K.Y., Kumar, B., Tien, N.T., Lee, N.-E., Kim, S.-W., Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 6 (2013), 169–175.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 169-175
-
-
Lee, J.-H.1
Lee, K.Y.2
Kumar, B.3
Tien, N.T.4
Lee, N.-E.5
Kim, S.-W.6
-
10
-
-
34548190627
-
Integrated nanogenerators in biofluid
-
[10] Wang, X., Liu, J., Song, J., Wang, Z.L., Integrated nanogenerators in biofluid. Nano Lett. 7 (2007), 2475–2479.
-
(2007)
Nano Lett.
, vol.7
, pp. 2475-2479
-
-
Wang, X.1
Liu, J.2
Song, J.3
Wang, Z.L.4
-
11
-
-
39149112201
-
Microfibre-nanowire hybrid structure for energy scavenging
-
[11] Qin, Y., Wang, X., Wang, Z.L., Microfibre-nanowire hybrid structure for energy scavenging. Nature 451 (2008), 809–813.
-
(2008)
Nature
, vol.451
, pp. 809-813
-
-
Qin, Y.1
Wang, X.2
Wang, Z.L.3
-
12
-
-
80055029421
-
PVDF microbelts for harvesting energy from respiration
-
[12] Sun, C., Shi, J., Bayerl, D.J., Wang, X., PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 4 (2011), 4508–4512.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4508-4512
-
-
Sun, C.1
Shi, J.2
Bayerl, D.J.3
Wang, X.4
-
13
-
-
84859128209
-
A hybrid piezoelectric structure for wearable nanogenerators
-
[13] Lee, M., Chen, C.Y., Wang, S., Cha, S.N., Park, Y.J., Kim, J.M., Chou, L.J., Wang, Z.L., A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24 (2012), 1759–1764.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1759-1764
-
-
Lee, M.1
Chen, C.Y.2
Wang, S.3
Cha, S.N.4
Park, Y.J.5
Kim, J.M.6
Chou, L.J.7
Wang, Z.L.8
-
14
-
-
84858142463
-
Flexible triboelectric generator
-
[14] Fan, F.-R., Tian, Z.-Q., Lin Wang, Z., Flexible triboelectric generator. Nano Energy 1 (2012), 328–334.
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.-R.1
Tian, Z.-Q.2
Lin Wang, Z.3
-
15
-
-
84902375046
-
A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification
-
[15] Zhu, G., Zhou, Y.S., Bai, P., Meng, X.S., Jing, Q., Chen, J., Wang, Z.L., A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26 (2014), 3788–3796.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3788-3796
-
-
Zhu, G.1
Zhou, Y.S.2
Bai, P.3
Meng, X.S.4
Jing, Q.5
Chen, J.6
Wang, Z.L.7
-
16
-
-
85027955168
-
Liquid–metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%
-
[16] Tang, W., Jiang, T., Fan, F.R., Yu, A.F., Zhang, C., Cao, X., Wang, Z.L., Liquid–metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25 (2015), 3718–3725.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3718-3725
-
-
Tang, W.1
Jiang, T.2
Fan, F.R.3
Yu, A.F.4
Zhang, C.5
Cao, X.6
Wang, Z.L.7
-
17
-
-
84941051519
-
Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
-
[17] Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., Wang, Z.L., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26 (2014), 6599–6607.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6599-6607
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Yang, J.6
Wu, Z.7
Wang, Z.L.8
-
18
-
-
84870879691
-
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
-
[18] Wang, S., Lin, L., Wang, Z.L., Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12 (2012), 6339–6346.
-
(2012)
Nano Lett.
, vol.12
, pp. 6339-6346
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
19
-
-
84895830368
-
Radial-arrayed rotary electrification for high performance triboelectric generator
-
[19] Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L., Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Commun., 5, 2014, 3426.
-
(2014)
Nature Commun.
, vol.5
, pp. 3426
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
20
-
-
84902254803
-
Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
-
[20] Zhu, G., Yang, W.Q., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., Bai, P., Wang, Z.L., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14 (2014), 3208–3213.
-
(2014)
Nano Lett.
, vol.14
, pp. 3208-3213
-
-
Zhu, G.1
Yang, W.Q.2
Zhang, T.3
Jing, Q.4
Chen, J.5
Zhou, Y.S.6
Bai, P.7
Wang, Z.L.8
-
21
-
-
84934766637
-
Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
-
[21] Wen, Z., Chen, J., Yeh, M.-H., Guo, H., Li, Z., Fan, X., Zhang, T., Zhu, L., Wang, Z.L., Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16 (2015), 38–46.
-
(2015)
Nano Energy
, vol.16
, pp. 38-46
-
-
Wen, Z.1
Chen, J.2
Yeh, M.-H.3
Guo, H.4
Li, Z.5
Fan, X.6
Zhang, T.7
Zhu, L.8
Wang, Z.L.9
-
22
-
-
84906875531
-
In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
-
[22] Zheng, Q., Shi, B., Fan, F., Wang, X., Yan, L., Yuan, W., Wang, S., Liu, H., Li, Z., Wang, Z.L., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26 (2014), 5851–5856.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5851-5856
-
-
Zheng, Q.1
Shi, B.2
Fan, F.3
Wang, X.4
Yan, L.5
Yuan, W.6
Wang, S.7
Liu, H.8
Li, Z.9
Wang, Z.L.10
-
23
-
-
84923225967
-
Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition
-
[23] Yang, J., Chen, J., Su, Y., Jing, Q., Li, Z., Yi, F., Wen, X., Wang, Z., Wang, Z.L., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27 (2015), 1316–1326.
-
(2015)
Adv. Mater.
, vol.27
, pp. 1316-1326
-
-
Yang, J.1
Chen, J.2
Su, Y.3
Jing, Q.4
Li, Z.5
Yi, F.6
Wen, X.7
Wang, Z.8
Wang, Z.L.9
-
24
-
-
84946039055
-
A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems
-
[24] Zhang, R., Wang, S., Yeh, M.H., Pan, C., Lin, L., Yu, R., Zhang, Y., Zheng, L., Jiao, Z., Wang, Z.L., A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Adv. Mater. 27 (2015), 6482–6487.
-
(2015)
Adv. Mater.
, vol.27
, pp. 6482-6487
-
-
Zhang, R.1
Wang, S.2
Yeh, M.H.3
Pan, C.4
Lin, L.5
Yu, R.6
Zhang, Y.7
Zheng, L.8
Jiao, Z.9
Wang, Z.L.10
-
25
-
-
84934282756
-
A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring
-
[25] Yang, P.K., Lin, L., Yi, F., Li, X., Pradel, K.C., Zi, Y., Wu, C.I., He, J.H., Zhang, Y., Wang, Z.L., A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 27 (2015), 3817–3824.
-
(2015)
Adv. Mater.
, vol.27
, pp. 3817-3824
-
-
Yang, P.K.1
Lin, L.2
Yi, F.3
Li, X.4
Pradel, K.C.5
Zi, Y.6
Wu, C.I.7
He, J.H.8
Zhang, Y.9
Wang, Z.L.10
-
26
-
-
84921716284
-
Personalized keystroke dynamics for self-powered human–machine interfacing
-
[26] Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., Wang, Z.L., Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9 (2015), 105–116.
-
(2015)
ACS Nano
, vol.9
, pp. 105-116
-
-
Chen, J.1
Zhu, G.2
Yang, J.3
Jing, Q.4
Bai, P.5
Yang, W.6
Qi, X.7
Su, Y.8
Wang, Z.L.9
-
27
-
-
84928978915
-
Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors
-
[27] Wang, X., Wang, S., Yang, Y., Wang, Z.L., Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 9 (2015), 4553–4562.
-
(2015)
ACS Nano
, vol.9
, pp. 4553-4562
-
-
Wang, X.1
Wang, S.2
Yang, Y.3
Wang, Z.L.4
-
28
-
-
84928974890
-
Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
-
[28] Fan, X., Chen, J., Yang, J., Bai, P., Li, Z., Wang, Z.L., Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9 (2015), 4236–4243.
-
(2015)
ACS Nano
, vol.9
, pp. 4236-4243
-
-
Fan, X.1
Chen, J.2
Yang, J.3
Bai, P.4
Li, Z.5
Wang, Z.L.6
-
29
-
-
85027947338
-
A motion-and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator
-
[29] Kanik, M., Say, M.G., Daglar, B., Yavuz, A.F., Dolas, M.H., El-Ashry, M.M., Bayindir, M., A motion-and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 27 (2015), 2367–2376.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2367-2376
-
-
Kanik, M.1
Say, M.G.2
Daglar, B.3
Yavuz, A.F.4
Dolas, M.H.5
El-Ashry, M.M.6
Bayindir, M.7
-
30
-
-
84904461614
-
Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process
-
[30] Lin, Z.H., Cheng, G., Lee, S., Pradel, K.C., Wang, Z.L., Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26 (2014), 4690–4696.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4690-4696
-
-
Lin, Z.H.1
Cheng, G.2
Lee, S.3
Pradel, K.C.4
Wang, Z.L.5
-
31
-
-
84943176931
-
Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments
-
[31] Chun, J., Kim, J.W., Jung, W.-s., Kang, C.-Y., Kim, S.-W., Wang, Z.L., Baik, J.M., Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8 (2015), 3006–3012.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3006-3012
-
-
Chun, J.1
Kim, J.W.2
Jung, W.-S.3
Kang, C.-Y.4
Kim, S.-W.5
Wang, Z.L.6
Baik, J.M.7
-
32
-
-
84929327033
-
Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires
-
[32] Mao, Y., Geng, D., Liang, E., Wang, X., Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15 (2015), 227–234.
-
(2015)
Nano Energy
, vol.15
, pp. 227-234
-
-
Mao, Y.1
Geng, D.2
Liang, E.3
Wang, X.4
-
33
-
-
84949523898
-
High-output current density of the triboelectric nanogenerator made from recycling rice husks
-
[33] Wu, J.M., Chang, C.K., Chang, Y.T., High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy 19 (2016), 39–47.
-
(2016)
Nano Energy
, vol.19
, pp. 39-47
-
-
Wu, J.M.1
Chang, C.K.2
Chang, Y.T.3
-
34
-
-
84887009033
-
Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
-
[34] Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.H., Su, Y., Bai, P., Wen, X., Wang, Z.L., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7 (2013), 9461–9468.
-
(2013)
ACS Nano
, vol.7
, pp. 9461-9468
-
-
Yang, Y.1
Zhu, G.2
Zhang, H.3
Chen, J.4
Zhong, X.5
Lin, Z.H.6
Su, Y.7
Bai, P.8
Wen, X.9
Wang, Z.L.10
-
35
-
-
84924743446
-
Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives
-
[35] Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 176 (2014), 447–458.
-
(2014)
Faraday Discuss.
, vol.176
, pp. 447-458
-
-
Wang, Z.L.1
-
36
-
-
84951827631
-
Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
-
[36] Wang, X., Niu, S., Yin, Y., Yi, F., You, Z., Wang, Z.L., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater., 5, 2015, 1501467.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1501467
-
-
Wang, X.1
Niu, S.2
Yin, Y.3
Yi, F.4
You, Z.5
Wang, Z.L.6
-
37
-
-
84925688266
-
Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
-
[37] Chen, J., Yang, J., Li, Z., Fan, X., Zi, Y., Jing, Q., Guo, H., Wen, Z., Pradel, K.C., Niu, S., Wang, Z.L., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9 (2015), 3324–3331.
-
(2015)
ACS Nano
, vol.9
, pp. 3324-3331
-
-
Chen, J.1
Yang, J.2
Li, Z.3
Fan, X.4
Zi, Y.5
Jing, Q.6
Guo, H.7
Wen, Z.8
Pradel, K.C.9
Niu, S.10
Wang, Z.L.11
-
38
-
-
84903488394
-
Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
-
[38] Zhu, G., Su, Y., Bai, P., Chen, J., Jing, Q., Yang, W., Wang, Z.L., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8 (2014), 6031–6037.
-
(2014)
ACS Nano
, vol.8
, pp. 6031-6037
-
-
Zhu, G.1
Su, Y.2
Bai, P.3
Chen, J.4
Jing, Q.5
Yang, W.6
Wang, Z.L.7
-
39
-
-
84945975818
-
Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy
-
[39] Wang, S., Mu, X., Wang, X., Gu, A.Y., Wang, Z.L., Yang, Y., Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 9 (2015), 9554–9563.
-
(2015)
ACS Nano
, vol.9
, pp. 9554-9563
-
-
Wang, S.1
Mu, X.2
Wang, X.3
Gu, A.Y.4
Wang, Z.L.5
Yang, Y.6
-
40
-
-
84883248860
-
Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy
-
[40] Xie, Y., Wang, S., Lin, L., Jing, Q., Lin, Z.H., Niu, S., Wu, Z., Wang, Z.L., Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7 (2013), 7119–7125.
-
(2013)
ACS Nano
, vol.7
, pp. 7119-7125
-
-
Xie, Y.1
Wang, S.2
Lin, L.3
Jing, Q.4
Lin, Z.H.5
Niu, S.6
Wu, Z.7
Wang, Z.L.8
-
41
-
-
84946490233
-
Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind
-
[41] Zhu, H.R., Tang, W., Gao, C.Z., Han, Y., Li, T., Cao, X., Wang, Z.L., Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 14 (2015), 193–200.
-
(2015)
Nano Energy
, vol.14
, pp. 193-200
-
-
Zhu, H.R.1
Tang, W.2
Gao, C.Z.3
Han, Y.4
Li, T.5
Cao, X.6
Wang, Z.L.7
-
42
-
-
84893476756
-
Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires
-
[42] Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L., Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8 (2014), 680–689.
-
(2014)
ACS Nano
, vol.8
, pp. 680-689
-
-
Zhang, H.1
Yang, Y.2
Zhong, X.3
Su, Y.4
Zhou, Y.5
Hu, C.6
Wang, Z.L.7
-
43
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
[43] Wang, S., Xie, Y., Niu, S., Lin, L., Wang, Z.L., Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26 (2014), 2818–2824.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
44
-
-
84883868353
-
Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
-
[44] Zhu, G., Bai, P., Chen, J., Lin Wang, Z., Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2 (2013), 688–692.
-
(2013)
Nano Energy
, vol.2
, pp. 688-692
-
-
Zhu, G.1
Bai, P.2
Chen, J.3
Lin Wang, Z.4
-
45
-
-
84946491060
-
Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications
-
[45] Zhu, G., Peng, B., Chen, J., Jing, Q., Lin Wang, Z., Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 14 (2015), 126–138.
-
(2015)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Lin Wang, Z.5
-
46
-
-
84913554665
-
Triboelectric nanogenerators as self-powered active sensors
-
[46] Wang, S., Lin, L., Wang, Z.L., Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11 (2015), 436–462.
-
(2015)
Nano Energy
, vol.11
, pp. 436-462
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
47
-
-
84912008402
-
High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies
-
[47] Zhang, X.-S., Han, M.-D., Meng, B., Zhang, H.-X., High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 11 (2015), 304–322.
-
(2015)
Nano Energy
, vol.11
, pp. 304-322
-
-
Zhang, X.-S.1
Han, M.-D.2
Meng, B.3
Zhang, H.-X.4
-
48
-
-
84937251618
-
Recent progress on flexible triboelectric nanogenerators for self-powered electronics
-
[48] Hinchet, R., Seung, W., Kim, S.W., Recent progress on flexible triboelectric nanogenerators for self-powered electronics. ChemSusChem 8 (2015), 2327–2344.
-
(2015)
ChemSusChem
, vol.8
, pp. 2327-2344
-
-
Hinchet, R.1
Seung, W.2
Kim, S.W.3
-
49
-
-
84908089098
-
Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy
-
[49] Zheng, L., Lin, Z.-H., Cheng, G., Wu, W., Wen, X., Lee, S., Wang, Z.L., Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 9 (2014), 291–300.
-
(2014)
Nano Energy
, vol.9
, pp. 291-300
-
-
Zheng, L.1
Lin, Z.-H.2
Cheng, G.3
Wu, W.4
Wen, X.5
Lee, S.6
Wang, Z.L.7
-
50
-
-
84921796194
-
Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of approximately 55%
-
[50] Lin, L., Xie, Y., Niu, S., Wang, S., Yang, P.K., Wang, Z.L., Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of approximately 55%. ACS Nano 9 (2015), 922–930.
-
(2015)
ACS Nano
, vol.9
, pp. 922-930
-
-
Lin, L.1
Xie, Y.2
Niu, S.3
Wang, S.4
Yang, P.K.5
Wang, Z.L.6
-
51
-
-
84928949733
-
Nanopatterned textile-based wearable triboelectric nanogenerator
-
[51] Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.S., Lee, J.H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.W., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9 (2015), 3501–3509.
-
(2015)
ACS Nano
, vol.9
, pp. 3501-3509
-
-
Seung, W.1
Gupta, M.K.2
Lee, K.Y.3
Shin, K.S.4
Lee, J.H.5
Kim, T.Y.6
Kim, S.7
Lin, J.8
Kim, J.H.9
Kim, S.W.10
-
52
-
-
84873676798
-
Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
-
[52] Zhu, G., Lin, Z.H., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y., Wang, Z.L., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13 (2013), 847–853.
-
(2013)
Nano Lett.
, vol.13
, pp. 847-853
-
-
Zhu, G.1
Lin, Z.H.2
Jing, Q.3
Bai, P.4
Pan, C.5
Yang, Y.6
Zhou, Y.7
Wang, Z.L.8
-
53
-
-
84942524430
-
Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide Template
-
[53] Dudem, B., Ko, Y.H., Leem, J.W., Lee, S.H., Yu, J.S., Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide Template. ACS Appl. Mater. Interfaces 7 (2015), 20520–20529.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 20520-20529
-
-
Dudem, B.1
Ko, Y.H.2
Leem, J.W.3
Lee, S.H.4
Yu, J.S.5
-
54
-
-
84949254632
-
One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers
-
[54] Choi, D., Yoo, D., Kim, D.S., One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers. Adv. Mater. 27 (2015), 7386–7394.
-
(2015)
Adv. Mater.
, vol.27
, pp. 7386-7394
-
-
Choi, D.1
Yoo, D.2
Kim, D.S.3
-
55
-
-
84874967575
-
Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
[55] Zhang, X.S., Han, M.D., Wang, R.X., Zhu, F.Y., Li, Z.H., Wang, W., Zhang, H.X., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13 (2013), 1168–1172.
-
(2013)
Nano Lett.
, vol.13
, pp. 1168-1172
-
-
Zhang, X.S.1
Han, M.D.2
Wang, R.X.3
Zhu, F.Y.4
Li, Z.H.5
Wang, W.6
Zhang, H.X.7
-
56
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
[56] Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z.L., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12 (2012), 3109–3114.
-
(2012)
Nano Lett.
, vol.12
, pp. 3109-3114
-
-
Fan, F.R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
57
-
-
84916597286
-
Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
-
[57] Jeong, C.K., Baek, K.M., Niu, S., Nam, T.W., Hur, Y.H., Park, D.Y., Hwang, G.T., Byun, M., Wang, Z.L., Jung, Y.S., Lee, K.J., Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14 (2014), 7031–7038.
-
(2014)
Nano Lett.
, vol.14
, pp. 7031-7038
-
-
Jeong, C.K.1
Baek, K.M.2
Niu, S.3
Nam, T.W.4
Hur, Y.H.5
Park, D.Y.6
Hwang, G.T.7
Byun, M.8
Wang, Z.L.9
Jung, Y.S.10
Lee, K.J.11
-
58
-
-
84921509732
-
High-performance nanopattern triboelectric generator by block copolymer lithography
-
[58] Kim, D., Jeon, S.-B., Kim, J.Y., Seol, M.-L., Kim, S.O., Choi, Y.-K., High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12 (2015), 331–338.
-
(2015)
Nano Energy
, vol.12
, pp. 331-338
-
-
Kim, D.1
Jeon, S.-B.2
Kim, J.Y.3
Seol, M.-L.4
Kim, S.O.5
Choi, Y.-K.6
-
59
-
-
84905455245
-
Hydrophobic sponge structure-based triboelectric nanogenerator
-
[59] Lee, K.Y., Chun, J., Lee, J.H., Kim, K.N., Kang, N.R., Kim, J.Y., Kim, M.H., Shin, K.S., Gupta, M.K., Baik, J.M., Kim, S.W., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26 (2014), 5037–5042.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5037-5042
-
-
Lee, K.Y.1
Chun, J.2
Lee, J.H.3
Kim, K.N.4
Kang, N.R.5
Kim, J.Y.6
Kim, M.H.7
Shin, K.S.8
Gupta, M.K.9
Baik, J.M.10
Kim, S.W.11
-
60
-
-
4744353156
-
A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties
-
[60] Diaz, A.F., Felix-Navarro, R.M., A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrost. 62 (2004), 277–290.
-
(2004)
J. Electrost.
, vol.62
, pp. 277-290
-
-
Diaz, A.F.1
Felix-Navarro, R.M.2
-
61
-
-
84928978916
-
Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators
-
[61] Shin, S.H., Kwon, Y.H., Kim, Y.H., Jung, J.Y., Lee, M.H., Nah, J., Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9 (2015), 4621–4627.
-
(2015)
ACS Nano
, vol.9
, pp. 4621-4627
-
-
Shin, S.H.1
Kwon, Y.H.2
Kim, Y.H.3
Jung, J.Y.4
Lee, M.H.5
Nah, J.6
-
62
-
-
84949513295
-
High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification
-
[62] Feng, Y., Zheng, Y., Ma, S., Wang, D., Zhou, F., Liu, W., High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 19 (2016), 48–57.
-
(2016)
Nano Energy
, vol.19
, pp. 48-57
-
-
Feng, Y.1
Zheng, Y.2
Ma, S.3
Wang, D.4
Zhou, F.5
Liu, W.6
-
63
-
-
84892856965
-
High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
-
[63] Zhang, X.-S., Han, M.-D., Wang, R.-X., Meng, B., Zhu, F.-Y., Sun, X.-M., Hu, W., Wang, W., Li, Z.-H., Zhang, H.-X., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4 (2014), 123–131.
-
(2014)
Nano Energy
, vol.4
, pp. 123-131
-
-
Zhang, X.-S.1
Han, M.-D.2
Wang, R.-X.3
Meng, B.4
Zhu, F.-Y.5
Sun, X.-M.6
Hu, W.7
Wang, W.8
Li, Z.-H.9
Zhang, H.-X.10
-
64
-
-
84954046440
-
Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator
-
[64] Cheng, X., Meng, B., Chen, X., Han, M., Chen, H., Su, Z., Shi, M., Zhang, H., Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small, 2015, 10.1002/smll.201502720.
-
(2015)
Small
-
-
Cheng, X.1
Meng, B.2
Chen, X.3
Han, M.4
Chen, H.5
Su, Z.6
Shi, M.7
Zhang, H.8
-
65
-
-
84941736871
-
Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy
-
[65] Li, H.Y., Su, L., Kuang, S.Y., Pan, C.F., Zhu, G., Wang, Z.L., Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 25 (2015), 5691–5697.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 5691-5697
-
-
Li, H.Y.1
Su, L.2
Kuang, S.Y.3
Pan, C.F.4
Zhu, G.5
Wang, Z.L.6
-
66
-
-
0037180675
-
Polymer microstructures fabricated via laser ablation used for multianalyte protein microassay
-
[66] Ivanova, E.P., Wright, J.P., Pham, D., Filipponi, L., Viezzoli, A., Nicolau, D.V., Polymer microstructures fabricated via laser ablation used for multianalyte protein microassay. Langmuir 18 (2002), 9539–9546.
-
(2002)
Langmuir
, vol.18
, pp. 9539-9546
-
-
Ivanova, E.P.1
Wright, J.P.2
Pham, D.3
Filipponi, L.4
Viezzoli, A.5
Nicolau, D.V.6
-
67
-
-
22644452583
-
Remote microwave plasma source for cleaning chemical vapor deposition chambers: technology for reducing global warming gas emissions
-
[67] Raoux, S., Tanaka, T., Bhan, M., Ponnekanti, H., Seamons, M., Deacon, T., Xia, L.Q., Pham, F., Silvetti, D., Cheung, D., Fairbairn, K., Jonhson, A., Pearce, R., Langan, J., Remote microwave plasma source for cleaning chemical vapor deposition chambers: technology for reducing global warming gas emissions. J. Vac. Sci. Technol. B, 17, 1999, 477.
-
(1999)
J. Vac. Sci. Technol. B
, vol.17
, pp. 477
-
-
Raoux, S.1
Tanaka, T.2
Bhan, M.3
Ponnekanti, H.4
Seamons, M.5
Deacon, T.6
Xia, L.Q.7
Pham, F.8
Silvetti, D.9
Cheung, D.10
Fairbairn, K.11
Jonhson, A.12
Pearce, R.13
Langan, J.14
-
68
-
-
84955046669
-
2 plasma etching and surface modification of polyimide films: Time-dependent surface fluorination and fluorination model
-
2 plasma etching and surface modification of polyimide films: Time-dependent surface fluorination and fluorination model. J. Vac. Sci. Technol. A, 8, 1990, 2382.
-
(1990)
J. Vac. Sci. Technol. A
, vol.8
, pp. 2382
-
-
Scott, P.M.1
-
70
-
-
85027923006
-
Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
-
[70] Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., Wang, Z.L., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26 (2014), 6720–6728.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6720-6728
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Liu, C.5
Zhou, Y.S.6
Wang, Z.L.7
-
71
-
-
70349861895
-
Controlled growth of aligned polymer nanowires
-
[71] Fang, H., Wu, W., Song, J., Wang, Z.L., Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 113 (2009), 16571–16574.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 16571-16574
-
-
Fang, H.1
Wu, W.2
Song, J.3
Wang, Z.L.4
-
72
-
-
0035793890
-
Submicrometer patterning of charge in thin-film electrets
-
[72] Jacobs, H.O., Whitesides, G.M., Submicrometer patterning of charge in thin-film electrets. Science 291 (2001), 1763–1766.
-
(2001)
Science
, vol.291
, pp. 1763-1766
-
-
Jacobs, H.O.1
Whitesides, G.M.2
-
74
-
-
84940484437
-
Kinetics for the sequential infiltration synthesis of alumina in poly(methyl methacrylate): an infrared spectroscopic study
-
[74] Biswas, M., Libera, J.A., Darling, S.B., Elam, J.W., Kinetics for the sequential infiltration synthesis of alumina in poly(methyl methacrylate): an infrared spectroscopic study. J. Phys. Chem. C 119 (2015), 14585–14592.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 14585-14592
-
-
Biswas, M.1
Libera, J.A.2
Darling, S.B.3
Elam, J.W.4
-
75
-
-
79959784768
-
A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates
-
[75] Peng, Q., Tseng, Y.C., Darling, S.B., Elam, J.W., A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5 (2011), 4600–4606.
-
(2011)
ACS Nano
, vol.5
, pp. 4600-4606
-
-
Peng, Q.1
Tseng, Y.C.2
Darling, S.B.3
Elam, J.W.4
-
76
-
-
78649834544
-
Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers
-
[76] Peng, Q., Tseng, Y.C., Darling, S.B., Elam, J.W., Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22 (2010), 5129–5133.
-
(2010)
Adv. Mater.
, vol.22
, pp. 5129-5133
-
-
Peng, Q.1
Tseng, Y.C.2
Darling, S.B.3
Elam, J.W.4
-
77
-
-
80052565794
-
Enhanced block copolymer lithography using sequential infiltration synthesis
-
[77] Tseng, Y.-C., Peng, Q., Ocola, L.E., Elam, J.W., Darling, S.B., Enhanced block copolymer lithography using sequential infiltration synthesis. J. Phys. Chem. C 115 (2011), 17725–17729.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 17725-17729
-
-
Tseng, Y.-C.1
Peng, Q.2
Ocola, L.E.3
Elam, J.W.4
Darling, S.B.5
-
78
-
-
84884266250
-
Polymer crystallization as a tool to pattern hybrid nanostructures: growth of 12 nm ZnO arrays in poly(3-hexylthiophene)
-
[78] Saberi Moghaddam, R., Huettner, S., Vaynzof, Y., Ducati, C., Divitini, G., Lohwasser, R.H., Musselman, K.P., Sepe, A., Scherer, M.R., Thelakkat, M., Steiner, U., Friend, R.H., Polymer crystallization as a tool to pattern hybrid nanostructures: growth of 12 nm ZnO arrays in poly(3-hexylthiophene). Nano Lett. 13 (2013), 4499–4504.
-
(2013)
Nano Lett.
, vol.13
, pp. 4499-4504
-
-
Saberi Moghaddam, R.1
Huettner, S.2
Vaynzof, Y.3
Ducati, C.4
Divitini, G.5
Lohwasser, R.H.6
Musselman, K.P.7
Sepe, A.8
Scherer, M.R.9
Thelakkat, M.10
Steiner, U.11
Friend, R.H.12
-
79
-
-
84940703473
-
Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development
-
[79] Yu, Y., Li, Z., Wang, Y., Gong, S., Wang, X., Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv. Mater. 27 (2015), 4938–4944.
-
(2015)
Adv. Mater.
, vol.27
, pp. 4938-4944
-
-
Yu, Y.1
Li, Z.2
Wang, Y.3
Gong, S.4
Wang, X.5
-
80
-
-
84875822980
-
3/GaN metal–insulator–semiconductor capacitors with post-deposition annealing
-
155101
-
3/GaN metal–insulator–semiconductor capacitors with post-deposition annealing. J. Phys. D: Appl. Phys., 46, 2013, 155101.
-
(2013)
J. Phys. D: Appl. Phys.
, vol.46
-
-
Kang, H.-S.1
Siva Pratap Reddy, M.2
Kim, D.-S.3
Kim, K.-W.4
Ha, J.-B.5
Lee, Y.S.6
Choi, H.-C.7
Lee, J.-H.8
-
81
-
-
75649140552
-
Atomic layer deposition: an overview
-
[81] George, S.M., Atomic layer deposition: an overview. Chem. Rev. 110 (2010), 111–131.
-
(2010)
Chem. Rev.
, vol.110
, pp. 111-131
-
-
George, S.M.1
-
82
-
-
85000386344
-
Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction
-
[82] Kim, J.-H., Chun, J., Kim, J.W., Choi, W.J., Baik, J.M., Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction. Adv. Funct. Mater. 25 (2015), 7049–7055.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 7049-7055
-
-
Kim, J.-H.1
Chun, J.2
Kim, J.W.3
Choi, W.J.4
Baik, J.M.5
-
83
-
-
84877711037
-
A self-powered triboelectric nanosensor for mercury ion detection
-
[83] Lin, Z.H., Zhu, G., Zhou, Y.S., Yang, Y., Bai, P., Chen, J., Wang, Z.L., A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. 52 (2013), 5065–5069.
-
(2013)
Angew. Chem.
, vol.52
, pp. 5065-5069
-
-
Lin, Z.H.1
Zhu, G.2
Zhou, Y.S.3
Yang, Y.4
Bai, P.5
Chen, J.6
Wang, Z.L.7
-
84
-
-
84903477526
-
Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor
-
[84] Lin, Z.H., Cheng, G., Wu, W., Pradel, K.C., Wang, Z.L., Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 8 (2014), 6440–6448.
-
(2014)
ACS Nano
, vol.8
, pp. 6440-6448
-
-
Lin, Z.H.1
Cheng, G.2
Wu, W.3
Pradel, K.C.4
Wang, Z.L.5
-
85
-
-
84924405198
-
β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation
-
[85] Li, Z., Chen, J., Yang, J., Su, Y., Fan, X., Wu, Y., Yu, C., Wang, Z.L., β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8 (2015), 887–896.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 887-896
-
-
Li, Z.1
Chen, J.2
Yang, J.3
Su, Y.4
Fan, X.5
Wu, Y.6
Yu, C.7
Wang, Z.L.8
-
86
-
-
84869380196
-
Detection of trace nitroaromatic isomers using indium tin oxide electrodes modified using beta-cyclodextrin and silver nanoparticles
-
[86] Chen, X., Cheng, X., Gooding, J.J., Detection of trace nitroaromatic isomers using indium tin oxide electrodes modified using beta-cyclodextrin and silver nanoparticles. Anal. Chem. 84 (2012), 8557–8563.
-
(2012)
Anal. Chem.
, vol.84
, pp. 8557-8563
-
-
Chen, X.1
Cheng, X.2
Gooding, J.J.3
-
87
-
-
0345098353
-
2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates
-
2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc. 125 (2003), 14960–14961.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 14960-14961
-
-
Zhou, Y.1
Antonietti, M.2
-
88
-
-
84940099248
-
Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection
-
[88] Jie, Y., Wang, N., Cao, X., Xu, Y., Li, T., Zhang, X., Wang, Z.L., Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 9 (2015), 8376–8383.
-
(2015)
ACS Nano
, vol.9
, pp. 8376-8383
-
-
Jie, Y.1
Wang, N.2
Cao, X.3
Xu, Y.4
Li, T.5
Zhang, X.6
Wang, Z.L.7
|