-
1
-
-
80051607518
-
Epidermal electronics
-
[1] Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.-I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A., Epidermal electronics. Science 333 (2011), 838–843.
-
(2011)
Science
, vol.333
, pp. 838-843
-
-
Kim, D.-H.1
Lu, N.2
Ma, R.3
Kim, Y.-S.4
Kim, R.-H.5
Wang, S.6
Wu, J.7
Won, S.M.8
Tao, H.9
Islam, A.10
Yu, K.J.11
Kim, T.-I.12
Chowdhury, R.13
Ying, M.14
Xu, L.15
Li, M.16
Chung, H.J.17
Keum, H.18
McCormick, M.19
Liu, P.20
Zhang, Y.W.21
Omenetto, F.G.22
Huang, Y.23
Coleman, T.24
Rogers, J.A.25
more..
-
2
-
-
84926303082
-
Curved electrode systems capable of integration on the auricle as a persistent brain-computer interface
-
[2] Norton, J.J.S., Lee, D.S., Lee, J.W., Lee, W., Kwon, O., Won, P., Jung, S.Y., Cheng, H., Jeong, J.W., Akce, A., Umunna, S., Na, I., Kwon, Y.H., Wang, X.Q., Liu, Z., Paik, U., Huang, Y., Bretl, T., Yeo, W.-H., Rogers, J.A., Curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. 112 (2015), 3920–3925.
-
(2015)
Proc. Natl. Acad. Sci.
, vol.112
, pp. 3920-3925
-
-
Norton, J.J.S.1
Lee, D.S.2
Lee, J.W.3
Lee, W.4
Kwon, O.5
Won, P.6
Jung, S.Y.7
Cheng, H.8
Jeong, J.W.9
Akce, A.10
Umunna, S.11
Na, I.12
Kwon, Y.H.13
Wang, X.Q.14
Liu, Z.15
Paik, U.16
Huang, Y.17
Bretl, T.18
Yeo, W.-H.19
Rogers, J.A.20
more..
-
3
-
-
84951952995
-
Epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion and electrical muscle activation
-
[3] Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W.H., Park, S.I., Boyce, B., Kim, H., Yu, J., Lai, H.Y., Jung, S., Zhou, Y., Kim, J., Cho, S., Huang, Y., Bretl, T., Rogers, J.A., Epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion and electrical muscle activation. Adv. Mater., 2015, 10.1002/adma.201504155.
-
(2015)
Adv. Mater.
-
-
Xu, B.1
Akhtar, A.2
Liu, Y.3
Chen, H.4
Yeo, W.H.5
Park, S.I.6
Boyce, B.7
Kim, H.8
Yu, J.9
Lai, H.Y.10
Jung, S.11
Zhou, Y.12
Kim, J.13
Cho, S.14
Huang, Y.15
Bretl, T.16
Rogers, J.A.17
-
4
-
-
84932194573
-
Conformal piezoelectric system for clinical and experimental characterization of soft tissue biomechanics
-
[4] Dagdeviren, C., Shi, Y., Joe, P., Ghaffari, R., Balooch, G., Usgaonkar, K., Gur, O., Tran, P.L., Crosby, J.R., Meyer, M., Su, Y., Chad Webb, R., Tedesco, A.S., Slepian, M.J., Huang, Y., Rogers, J.A., Conformal piezoelectric system for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater., 2015, 1–11.
-
(2015)
Nat. Mater.
, pp. 1-11
-
-
Dagdeviren, C.1
Shi, Y.2
Joe, P.3
Ghaffari, R.4
Balooch, G.5
Usgaonkar, K.6
Gur, O.7
Tran, P.L.8
Crosby, J.R.9
Meyer, M.10
Su, Y.11
Chad Webb, R.12
Tedesco, A.S.13
Slepian, M.J.14
Huang, Y.15
Rogers, J.A.16
-
5
-
-
84952359790
-
Printable ultrathin metal oxide semiconductor-based conformal biosensors
-
[5] Rim, Y.S., Bae, S.H., Chen, H., Yang, J.L., Kim, J., Andrews, A.M., Weiss, P.S., Yang, Y., Tseng, H.R., Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 9 (2015), 12174–12181.
-
(2015)
ACS Nano
, vol.9
, pp. 12174-12181
-
-
Rim, Y.S.1
Bae, S.H.2
Chen, H.3
Yang, J.L.4
Kim, J.5
Andrews, A.M.6
Weiss, P.S.7
Yang, Y.8
Tseng, H.R.9
-
6
-
-
84884596674
-
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
-
[6] Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.-S., Yeo, W.-H., Park, J.S., Song, J., Li, Y., Huang, Y., Gorbach, A.M., Rogers, J.A., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12 (2013), 938–944.
-
(2013)
Nat. Mater.
, vol.12
, pp. 938-944
-
-
Webb, R.C.1
Bonifas, A.P.2
Behnaz, A.3
Zhang, Y.4
Yu, K.J.5
Cheng, H.6
Shi, M.7
Bian, Z.8
Liu, Z.9
Kim, Y.-S.10
Yeo, W.-H.11
Park, J.S.12
Song, J.13
Li, Y.14
Huang, Y.15
Gorbach, A.M.16
Rogers, J.A.17
-
7
-
-
84890429754
-
Materials and optimized designs for human-machine interfaces via epidermal electronics
-
[7] Jeong, J.W., Yeo, W.-H., Akhtar, A., Norton, J.J.S., Kwack, Y.J., Li, S., Jung, S.Y., Su, Y., Lee, W., Xia, J., Cheng, H., Huang, Y., Choi, W.S., Bretl, T., Rogers, J.A., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25 (2013), 6839–6846.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6839-6846
-
-
Jeong, J.W.1
Yeo, W.-H.2
Akhtar, A.3
Norton, J.J.S.4
Kwack, Y.J.5
Li, S.6
Jung, S.Y.7
Su, Y.8
Lee, W.9
Xia, J.10
Cheng, H.11
Huang, Y.12
Choi, W.S.13
Bretl, T.14
Rogers, J.A.15
-
8
-
-
84870606745
-
Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy
-
[8] Kim, D.-H., Ghaffari, R., Lu, N., Wang, S., Lee, S.P., Keum, H., D”Angelo, R., Klinker, L., Su, Y., Lü, C., Kim, Y.-S., Ameen, A., Li, Y., Zhang, Y., de Graff, B., Hsu, Y.Y., Liu, Z., Ruskin, J., Xu, L., Lu, C., Omenetto, F.G., Huang, Y., Mansour, M., Slepian, M.J., Rogers, J.A., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. 109 (2012), 19910–19915.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, pp. 19910-19915
-
-
Kim, D.-H.1
Ghaffari, R.2
Lu, N.3
Wang, S.4
Lee, S.P.5
Keum, H.6
D”Angelo, R.7
Klinker, L.8
Su, Y.9
Lü, C.10
Kim, Y.-S.11
Ameen, A.12
Li, Y.13
Zhang, Y.14
de Graff, B.15
Hsu, Y.Y.16
Liu, Z.17
Ruskin, J.18
Xu, L.19
Lu, C.20
Omenetto, F.G.21
Huang, Y.22
Mansour, M.23
Slepian, M.J.24
Rogers, J.A.25
more..
-
9
-
-
84907362165
-
Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring
-
[9] Dagdeviren, C., Su, Y., Joe, P., Yona, R., Liu, Y., Kim, Y.-S., Huang, Y., Damadoran, A.R., Xia, J., Martin, L.W., Huang, Y., Rogers, J.A., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun., 5, 2014, 4496.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4496
-
-
Dagdeviren, C.1
Su, Y.2
Joe, P.3
Yona, R.4
Liu, Y.5
Kim, Y.-S.6
Huang, Y.7
Damadoran, A.R.8
Xia, J.9
Martin, L.W.10
Huang, Y.11
Rogers, J.A.12
-
10
-
-
79960924007
-
Highly flexible, printed alkaline batteries based on mesh-embedded electrodes
-
[10] Gaikwad, A.M., Whiting, G.L., Steingart, D.A., Arias, A.C., Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23 (2011), 3251–3255.
-
(2011)
Adv. Mater.
, vol.23
, pp. 3251-3255
-
-
Gaikwad, A.M.1
Whiting, G.L.2
Steingart, D.A.3
Arias, A.C.4
-
11
-
-
80051650174
-
Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes
-
[11] Zhang, S., Ji, C., Bian, Z., Liu, R., Xia, X., Yun, D., Zhang, L., Huang, C., Cao, A., Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett. 11 (2011), 3383–3387.
-
(2011)
Nano Lett.
, vol.11
, pp. 3383-3387
-
-
Zhang, S.1
Ji, C.2
Bian, Z.3
Liu, R.4
Xia, X.5
Yun, D.6
Zhang, L.7
Huang, C.8
Cao, A.9
-
12
-
-
79851499896
-
Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage
-
[12] Bae, J., Song, M.K., Park, Y.J., Kim, J.M., Liu, M., Wang, Z.L., Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50 (2011), 1683–1687.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 1683-1687
-
-
Bae, J.1
Song, M.K.2
Park, Y.J.3
Kim, J.M.4
Liu, M.5
Wang, Z.L.6
-
13
-
-
84928949733
-
Nanopatterned textile-based wearable triboelectric nanogenerator
-
[13] Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.-S., Lee, J.-H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.-W., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9 (2015), 3501–3509.
-
(2015)
ACS Nano
, vol.9
, pp. 3501-3509
-
-
Seung, W.1
Gupta, M.K.2
Lee, K.Y.3
Shin, K.-S.4
Lee, J.-H.5
Kim, T.Y.6
Kim, S.7
Lin, J.8
Kim, J.H.9
Kim, S.-W.10
-
14
-
-
84876541745
-
Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
-
[14] Bai, P., Zhu, G., Lin, Z.-H., Jing, Q., Chen, J., Zhang, G., Ma, J., Wang, Z.L., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7 (2013), 3713–3719.
-
(2013)
ACS Nano
, vol.7
, pp. 3713-3719
-
-
Bai, P.1
Zhu, G.2
Lin, Z.-H.3
Jing, Q.4
Chen, J.5
Zhang, G.6
Ma, J.7
Wang, Z.L.8
-
15
-
-
84887014365
-
Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
-
[15] Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., Wang, Z.L., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7 (2013), 9213–9222.
-
(2013)
ACS Nano
, vol.7
, pp. 9213-9222
-
-
Yang, Y.1
Zhang, H.2
Lin, Z.-H.3
Zhou, Y.S.4
Jing, Q.5
Su, Y.6
Yang, J.7
Chen, J.8
Hu, C.9
Wang, Z.L.10
-
16
-
-
85027934180
-
A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
-
[16] Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27 (2015), 2472–2478.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2472-2478
-
-
Pu, X.1
Li, L.2
Song, H.3
Du, C.4
Zhao, Z.5
Jiang, C.6
Cao, G.7
Hu, W.8
Wang, Z.L.9
-
17
-
-
84906815198
-
Woven structured triboelectric nanogenerator for wearable devices
-
[17] Zhou, T., Zhang, C., Han, C.B., Fan, F.-R., Tang, W., Wang, Z.L., Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6 (2014), 14695–14701.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 14695-14701
-
-
Zhou, T.1
Zhang, C.2
Han, C.B.3
Fan, F.-R.4
Tang, W.5
Wang, Z.L.6
-
18
-
-
84934977686
-
Highly stretchable 2D fabrics for wearable triboelectric
-
[18] Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.-W., Wang, Z.L., Baik, J.M., Highly stretchable 2D fabrics for wearable triboelectric. ACS Nano 9 (2015), 6394–6400.
-
(2015)
ACS Nano
, vol.9
, pp. 6394-6400
-
-
Kim, K.N.1
Chun, J.2
Kim, J.W.3
Lee, K.Y.4
Park, J.U.5
Kim, S.-W.6
Wang, Z.L.7
Baik, J.M.8
-
19
-
-
84906663713
-
Graphene-based conformal devices
-
[19] Park, Y.J., Lee, S.-K., Kim, M.-S., Kim, H., Ahn, J.-H., Graphene-based conformal devices. ACS Nano 8 (2014), 7655–7662.
-
(2014)
ACS Nano
, vol.8
, pp. 7655-7662
-
-
Park, Y.J.1
Lee, S.-K.2
Kim, M.-S.3
Kim, H.4
Ahn, J.-H.5
-
20
-
-
84902144382
-
Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators
-
[20] Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., Wang, Z.L., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24 (2014), 3332–3340.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 3332-3340
-
-
Niu, S.1
Liu, Y.2
Wang, S.3
Lin, L.4
Zhou, Y.S.5
Hu, Y.6
Wang, Z.L.7
-
21
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
[21] Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8 (2015), 2250–2282.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
23
-
-
84954108741
-
A vanadium-doped ZnO nanosheets–polymer composite for flexible piezoelectric nanogenerators
-
[23] Shin, S.-H., Kwon, Y.H., Lee, M.H., Jung, J.-Y., Seol, J.H., Nah, J., A vanadium-doped ZnO nanosheets–polymer composite for flexible piezoelectric nanogenerators. Nanoscale 8 (2016), 1314–1321.
-
(2016)
Nanoscale
, vol.8
, pp. 1314-1321
-
-
Shin, S.-H.1
Kwon, Y.H.2
Lee, M.H.3
Jung, J.-Y.4
Seol, J.H.5
Nah, J.6
-
24
-
-
84958182914
-
Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography
-
[24] Thantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography. J. Magn. Magn. Mater. 407 (2016), 273–278.
-
(2016)
J. Magn. Magn. Mater.
, vol.407
, pp. 273-278
-
-
Thantirige, R.M.1
John, J.2
Pradhan, N.R.3
Carter, K.R.4
Tuominen, M.T.5
-
25
-
-
84869996100
-
A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes
-
[25] Kwon, J., Seung, W., Sharma, B.K., Kim, S.-W., Ahn, J.-H., A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5 (2012), 8970–8976.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8970-8976
-
-
Kwon, J.1
Seung, W.2
Sharma, B.K.3
Kim, S.-W.4
Ahn, J.-H.5
-
26
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
[26] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrshnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Özyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5 (2010), 574–578.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 574-578
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
Xu, X.4
Park, J.-S.5
Zheng, Y.6
Balakrshnan, J.7
Lei, T.8
Kim, H.R.9
Song, Y.I.10
Kim, Y.-J.11
Kim, K.S.12
Özyilmaz, B.13
Ahn, J.-H.14
Hong, B.H.15
Iijima, S.16
-
27
-
-
84870879691
-
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
-
[27] Wang, S., Lin, L., Wang, Z.L., Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12 (2012), 6339–6346.
-
(2012)
Nano Lett.
, vol.12
, pp. 6339-6346
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
28
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
[28] Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z.L., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12 (2012), 3109–3114.
-
(2012)
Nano Lett.
, vol.12
, pp. 3109-3114
-
-
Fan, F.-R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
29
-
-
34250201485
-
Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing
-
[29] Tsougeni, K., Tserepi, A., Boulousis, G., Constantoudis, V., Gogolides, E., Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Process. Polym. 4 (2007), 398–405.
-
(2007)
Plasma Process. Polym.
, vol.4
, pp. 398-405
-
-
Tsougeni, K.1
Tserepi, A.2
Boulousis, G.3
Constantoudis, V.4
Gogolides, E.5
-
30
-
-
0030143664
-
Polymer surface modification by plasmas and photons
-
[30] Chan, C.M., Ko, T.M., Hiraoka, H., Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24 (1996), 1–54.
-
(1996)
Surf. Sci. Rep.
, vol.24
, pp. 1-54
-
-
Chan, C.M.1
Ko, T.M.2
Hiraoka, H.3
-
31
-
-
84892856965
-
High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
-
[31] Zhang, X.-S., Han, M.-D., Wang, R.-X., Meng, B., Zhu, F.-Y., Sun, X.-M., Hu, W., Wang, W., Li, Z.-H., Zhang, H.-X., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4 (2014), 123–131.
-
(2014)
Nano Energy
, vol.4
, pp. 123-131
-
-
Zhang, X.-S.1
Han, M.-D.2
Wang, R.-X.3
Meng, B.4
Zhu, F.-Y.5
Sun, X.-M.6
Hu, W.7
Wang, W.8
Li, Z.-H.9
Zhang, H.-X.10
-
32
-
-
84940020590
-
Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures
-
[32] Seol, M.-L., Lee, S.-H., Han, J.-W., Kim, D., Cho, G.-H., Choi, Y.-K., Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17 (2015), 63–71.
-
(2015)
Nano Energy
, vol.17
, pp. 63-71
-
-
Seol, M.-L.1
Lee, S.-H.2
Han, J.-W.3
Kim, D.4
Cho, G.-H.5
Choi, Y.-K.6
-
33
-
-
84907365170
-
Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
-
[33] Su, Y., Wen, X., Zhu, G., Yang, J., Chen, J., Bai, P., Wu, Z., Jiang, Y., Lin Wang, Z., Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9 (2014), 186–195.
-
(2014)
Nano Energy
, vol.9
, pp. 186-195
-
-
Su, Y.1
Wen, X.2
Zhu, G.3
Yang, J.4
Chen, J.5
Bai, P.6
Wu, Z.7
Jiang, Y.8
Lin Wang, Z.9
-
34
-
-
84871456183
-
Unwanted currents can damage electronic equipment
-
[34] Ashford, P., Unwanted currents can damage electronic equipment. Avion News, 2010, 36–39.
-
(2010)
Avion News
, pp. 36-39
-
-
Ashford, P.1
-
35
-
-
0028320274
-
Surface fluorination of polyethylene films by different glow discharges. effects of frequency and electrode configuration
-
[35] Khairallah, Y., Arefi, F., Amouroux, J., Leonard, D., Bertrand, P., Surface fluorination of polyethylene films by different glow discharges. effects of frequency and electrode configuration. J. Adhes. Sci. Technol. 8 (2012), 363–381.
-
(2012)
J. Adhes. Sci. Technol.
, vol.8
, pp. 363-381
-
-
Khairallah, Y.1
Arefi, F.2
Amouroux, J.3
Leonard, D.4
Bertrand, P.5
-
36
-
-
84885390532
-
Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
-
[36] Hou, T.-C., Yang, Y., Zhang, H., Chen, J., Chen, L.-J., Wang, Z.L., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2 (2013), 856–862.
-
(2013)
Nano Energy
, vol.2
, pp. 856-862
-
-
Hou, T.-C.1
Yang, Y.2
Zhang, H.3
Chen, J.4
Chen, L.-J.5
Wang, Z.L.6
-
38
-
-
33947137365
-
Sulphur hexafluoride plasma treatment to enhance the hydrophobicity of CVD carbon coatings produced on cornstarch plasticized films
-
[38] Simão, R.A., da Silva, M.L.V.J., Martins, M., Thiré, R.M.S.M., Andrade, C.T., Sulphur hexafluoride plasma treatment to enhance the hydrophobicity of CVD carbon coatings produced on cornstarch plasticized films. Macromol. Symp. 245–246 (2006), 519–524.
-
(2006)
Macromol. Symp.
, vol.245-246
, pp. 519-524
-
-
Simão, R.A.1
da Silva, M.L.V.J.2
Martins, M.3
Thiré, R.M.S.M.4
Andrade, C.T.5
-
39
-
-
84907693480
-
Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures
-
[39] Dhakar, L., Tay, F.E.H., Lee, C., Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J. Micromech. Microeng., 24, 2014, 104002.
-
(2014)
J. Micromech. Microeng.
, vol.24
, pp. 104002
-
-
Dhakar, L.1
Tay, F.E.H.2
Lee, C.3
-
40
-
-
84906875531
-
In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
-
[40] Zheng, Q., Shi, B., Fan, F., Wang, X., Yan, L., Yuan, W., Wang, S., Liu, H., Li, Z., Wang, Z.L., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26 (2014), 5851–5856.
-
(2014)
Adv. Mater.
, vol.26
, pp. 5851-5856
-
-
Zheng, Q.1
Shi, B.2
Fan, F.3
Wang, X.4
Yan, L.5
Yuan, W.6
Wang, S.7
Liu, H.8
Li, Z.9
Wang, Z.L.10
-
41
-
-
84887009033
-
Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
-
[41] Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.-H., Su, Y., Bai, P., Wen, X., Wang, Z.L., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 10 (2013), 9461–9468.
-
(2013)
ACS Nano
, vol.10
, pp. 9461-9468
-
-
Yang, Y.1
Zhu, G.2
Zhang, H.3
Chen, J.4
Zhong, X.5
Lin, Z.-H.6
Su, Y.7
Bai, P.8
Wen, X.9
Wang, Z.L.10
-
42
-
-
84893476756
-
Singe-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires
-
[42] Zhang, H., Yang, Y., Zhong, X., Su, Y., Zhou, Y., Hu, C., Wang, Z.L., Singe-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8 (2014), 680–689.
-
(2014)
ACS Nano
, vol.8
, pp. 680-689
-
-
Zhang, H.1
Yang, Y.2
Zhong, X.3
Su, Y.4
Zhou, Y.5
Hu, C.6
Wang, Z.L.7
-
43
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
[43] Wang, S., Xie, Y., Niu, S., Lin, L., Wang, Z.L., Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26 (2014), 2818–2824.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
44
-
-
84902254803
-
Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
-
[44] Zhu, G., Yang, W.Q., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., Bai, P., Wang, Z.L., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14 (2014), 3208–3213.
-
(2014)
Nano Lett.
, vol.14
, pp. 3208-3213
-
-
Zhu, G.1
Yang, W.Q.2
Zhang, T.3
Jing, Q.4
Chen, J.5
Zhou, Y.S.6
Bai, P.7
Wang, Z.L.8
-
45
-
-
84870409013
-
Self-powered magnetic sensor based on a triboelectric nanogenerator
-
[45] Yang, Y., Lin, L., Zhang, Y., Jing, Q., Hou, T.-C., Wang, Z.L., Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6 (2012), 10378–10383.
-
(2012)
ACS Nano
, vol.6
, pp. 10378-10383
-
-
Yang, Y.1
Lin, L.2
Zhang, Y.3
Jing, Q.4
Hou, T.-C.5
Wang, Z.L.6
-
46
-
-
84934282756
-
A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring
-
[46] Yang, P.K., Lin, L., Yi, F., Li, X., Pradel, K.C., Zi, Y., Wu, C.I., He, J.H., Zhang, Y., Wang, Z.L., A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater., 2015, 10.1002/adma.201500652.
-
(2015)
Adv. Mater.
-
-
Yang, P.K.1
Lin, L.2
Yi, F.3
Li, X.4
Pradel, K.C.5
Zi, Y.6
Wu, C.I.7
He, J.H.8
Zhang, Y.9
Wang, Z.L.10
-
47
-
-
84876550392
-
Multilayer film for flexible applications
-
[47] Bae, S.H., Kahya, O., Sharma, B.K., Kwon, J., Cho, H.J., Özyilmaz, B., Ahn, J.-H., Multilayer film for flexible applications. ACS Nano 7 (2013), 3130–3138.
-
(2013)
ACS Nano
, vol.7
, pp. 3130-3138
-
-
Bae, S.H.1
Kahya, O.2
Sharma, B.K.3
Kwon, J.4
Cho, H.J.5
Özyilmaz, B.6
Ahn, J.-H.7
-
48
-
-
85000386344
-
Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction
-
[48] Kim, J.-H., Chun, J., Kim, J.W., Choi, W.J., Baik, J.M., Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction. Adv. Funct. Mater. 25 (2015), 7049–7055.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 7049-7055
-
-
Kim, J.-H.1
Chun, J.2
Kim, J.W.3
Choi, W.J.4
Baik, J.M.5
-
49
-
-
84913603783
-
Transparent paper-based triboelectric nanogenerator as page mark and anti-theft sensor
-
[49] Zhang, L.M., Xue, F., Du, W.M., Han, C.B., Zhang, C., Wang, Z.L., Transparent paper-based triboelectric nanogenerator as page mark and anti-theft sensor. Nano Res. 7 (2014), 1215–1223.
-
(2014)
Nano Res.
, vol.7
, pp. 1215-1223
-
-
Zhang, L.M.1
Xue, F.2
Du, W.M.3
Han, C.B.4
Zhang, C.5
Wang, Z.L.6
-
50
-
-
84955361901
-
Flexible organic triboronic transistor memory for a visible and wearable touch monitoring system
-
[50] Li, J., Zhang, C., Duan, L., Zhang, L.M., Wang, L.D., Dong, G.F., Wang, Z.L., Flexible organic triboronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 28 (2016), 106–110.
-
(2016)
Adv. Mater.
, vol.28
, pp. 106-110
-
-
Li, J.1
Zhang, C.2
Duan, L.3
Zhang, L.M.4
Wang, L.D.5
Dong, G.F.6
Wang, Z.L.7
-
51
-
-
84979561130
-
-
Fourth ed., Pile Buck International Inc.
-
[51] P. B. International, Pile driving, Fourth ed., Pile Buck International Inc., 2012.
-
(2012)
Pile driving
-
-
International, P.B.1
-
52
-
-
84976240370
-
Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping
-
[52] Wang, X., Zhang, H., Dong, L., Han, X., Du, W., Zhai, J., Pan, C., Wang, Z.L., Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 28 (2016), 2896–2903.
-
(2016)
Adv. Mater.
, vol.28
, pp. 2896-2903
-
-
Wang, X.1
Zhang, H.2
Dong, L.3
Han, X.4
Du, W.5
Zhai, J.6
Pan, C.7
Wang, Z.L.8
|