-
1
-
-
84886992262
-
3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting
-
Kargar, A. et al. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 7, 9407-9415 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 9407-9415
-
-
Kargar, A.1
-
2
-
-
84897012440
-
3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting
-
Zhang, X., Liu, Y. & Kang, Z. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces. 6, 4480-4489 (2014).
-
(2014)
ACS Appl. Mater. Interfaces.
, vol.6
, pp. 4480-4489
-
-
Zhang, X.1
Liu, Y.2
Kang, Z.3
-
3
-
-
80755159106
-
2 nanorods for photoelectrochemical hydrogen production
-
2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978-4984 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 4978-4984
-
-
Cho, I.S.1
-
4
-
-
67049096816
-
Gas sensors using hierarchical and hollow oxide nanostructures: Overview
-
Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuat. B 140, 319-336 (2009).
-
(2009)
Sens. Actuat. B
, vol.140
, pp. 319-336
-
-
Lee, J.-H.1
-
5
-
-
84902184782
-
Three-dimensional branched nanowire heterostructures as efficient light-extraction layer in light-emitting diodes
-
Ye, B. U. et al. Three-dimensional branched nanowire heterostructures as efficient light-extraction layer in light-emitting diodes. Adv. Funct. Mater. 24, 3384-3391 (2014).
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 3384-3391
-
-
Ye, B.U.1
-
6
-
-
77956252964
-
2 nanowire by polarized Raman spectroscopy
-
2 nanowire by polarized Raman spectroscopy. Appl. Phys. Lett. 96, 213108 (2010).
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 213108
-
-
Kim, M.H.1
-
7
-
-
33846456971
-
2 core-shelled nanowires: From synthesis to mechanical, optical, electricaland photoconductive properties
-
2 core-shelled nanowires: from synthesis to mechanical, optical, electricaland photoconductive properties. Adv. Mater. 19, 143-149 (2007).
-
(2007)
Adv. Mater.
, vol.19
, pp. 143-149
-
-
Chueh, Y.-L.1
-
8
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253-278 (2009).
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
9
-
-
84887832483
-
2 nanowire arrays
-
2 nanowire arrays. Nano Lett. 13, 5350-5354 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 5350-5354
-
-
Tang, J.1
-
10
-
-
84873319686
-
2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation
-
2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation. Phys. Chem. Chem. Phys. 15, 2793-2799 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 2793-2799
-
-
Mou, Z.1
-
12
-
-
84885409193
-
2-Au composite nanoparticles formed by one-step synthesis within the mesopores
-
2-Au composite nanoparticles formed by one-step synthesis within the mesopores. Chem. Mater. 25, 3921-3927 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 3921-3927
-
-
Jin, J.1
-
13
-
-
84936788083
-
-
accessed: August, 2014
-
InvestmentMine, 5 Year Ruthenium Prices and Price Charts, http://www.infomine.com/investment/metal-prices/ruthenium/5-year/, accessed: August, 2014.
-
5 Year Ruthenium Prices and Price Charts
-
-
-
14
-
-
79952848758
-
2 nanowires and electromigration-induced transport properties
-
2 nanowires and electromigration-induced transport properties. J. Phys. Chem. C 115, 4611-4615 (2011).
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 4611-4615
-
-
Lee, Y.1
-
15
-
-
77953174621
-
A versatile route for the synthesis of single crystalline oxide nanorods: Growth behavior and field emission characteristics
-
Chen, Z. G., Pei, F., Pei, Y. T. & De Hosson, J. T. M. A versatile route for the synthesis of single crystalline oxide nanorods: Growth behavior and field emission characteristics. Cryst. Growth Des. 10, 2585-2590 (2010).
-
(2010)
Cryst. Growth Des.
, vol.10
, pp. 2585-2590
-
-
Chen, Z.G.1
Pei, F.2
Pei, Y.T.3
De Hosson, J.T.M.4
-
16
-
-
79958197085
-
Formation of ZnO nanostructures by a simple way of thermal evaporation
-
Yao, B. D., Chan, Y. F. & Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757-759 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 757-759
-
-
Yao, B.D.1
Chan, Y.F.2
Wang, N.3
-
17
-
-
0037285167
-
Novel nanostructures of functional oxides synthesized by thermal evaporation
-
Dai, Z. R., Pan, Z. W. & Wang Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9-24 (2003).
-
(2003)
Adv. Funct. Mater.
, vol.13
, pp. 9-24
-
-
Dai, Z.R.1
Pan, Z.W.2
Wang, Z.L.3
-
18
-
-
77956135823
-
Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region
-
Shrestha, K. M., Sorensen, C. M. & Klabunde, K. J. Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368-14376 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 14368-14376
-
-
Shrestha, K.M.1
Sorensen, C.M.2
Klabunde, K.J.3
-
19
-
-
40749143139
-
CuO nanowires synthesized by thermal oxidation route
-
Chen, J. T. et al. CuO nanowires synthesized by thermal oxidation route. J. Alloy Comp. 454, 268-273 (2008).
-
(2008)
J. Alloy Comp.
, vol.454
, pp. 268-273
-
-
Chen, J.T.1
-
20
-
-
71949123237
-
Growth of metal oxide nanowires from supercooled liquid nanodroplets
-
Kim, M. H. et al. Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138-4146 (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 4138-4146
-
-
Kim, M.H.1
-
22
-
-
4944239637
-
2 nanorods with controllable shape and orientation
-
2 nanorods with controllable shape and orientation. Mater. Lett. 58, 3812-3815 (2004).
-
(2004)
Mater. Lett.
, vol.58
, pp. 3812-3815
-
-
Liu, J.1
-
24
-
-
0005041315
-
2 formation from the thermal decomposition of ruthenium(III) hydrate
-
2 formation from the thermal decomposition of ruthenium(III) hydrate. Thermochim. Acta 51, 307-314 (1981).
-
(1981)
Thermochim. Acta
, vol.51
, pp. 307-314
-
-
Duvigneaud, P.H.1
Reinhard-Deire, D.2
-
26
-
-
0031432330
-
2: A high-temperature electrochemical and calorimetric study
-
2: A high-temperature electrochemical and calorimetric study. Ceochim. Cosmochim. Acta 61, 5279-5293, (1997).
-
(1997)
Ceochim. Cosmochim. Acta
, vol.61
, pp. 5279-5293
-
-
O'Neill, H.S.C.1
Nell, J.2
-
28
-
-
84881567290
-
2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting
-
2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817-3823 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 3817-3823
-
-
Pu, Y.-C.1
-
29
-
-
84907992076
-
A three-dimensional hexagonalfluorine-doped tin oxide nanocone array: A superior light harvesting electrode for high performance photoelectrochemical water splitting
-
Li, J. et al. A three-dimensional hexagonalfluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy Environ. Sci. 7, 3651-3658 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3651-3658
-
-
Li, J.1
-
31
-
-
84902144692
-
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
-
T. Hisatomi, J. Kubota & K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43, 7520-7535 (2014).
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7520-7535
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
32
-
-
67749111685
-
2 nanorods on transparent conducting substrates for dye-sensitized solar cells
-
2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985-3990 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3985-3990
-
-
Liu, B.1
Aydil, E.S.2
|