-
1
-
-
35348984409
-
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
-
DOI 10.1038/nature06181, PII NATURE06181
-
Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885-889 (2007). (Pubitemid 47598610)
-
(2007)
Nature
, vol.449
, Issue.7164
, pp. 885-889
-
-
Tian, B.1
Zheng, X.2
Kempa, T.J.3
Fang, Y.4
Yu, N.5
Yu, G.6
Huang, J.7
Lieber, C.M.8
-
2
-
-
0037192480
-
Hybrid nanorod-polymer solar cells
-
DOI 10.1126/science.1069156
-
Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425-2427 (2002). (Pubitemid 34270250)
-
(2002)
Science
, vol.295
, Issue.5564
, pp. 2425-2427
-
-
Huynh, W.U.1
Dittmer, J.J.2
Alivisatos, A.P.3
-
3
-
-
0035891138
-
Photoelectrochemical cells
-
Grazel, M. Photoelectrochemical cells. Nature 414, 338-344 (2001).
-
(2001)
Nature
, vol.414
, pp. 338-344
-
-
Grazel, M.1
-
4
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
5
-
-
58149263348
-
Power generation with laterally packaged piezoelectric fine wires
-
Yang, R., Qin, Y., Dai, L. & Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34-39 (2009).
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 34-39
-
-
Yang, R.1
Qin, Y.2
Dai, L.3
Wang, Z.L.4
-
6
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
DOI 10.1126/science.1139366
-
Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102-105 (2007). (Pubitemid 46559527)
-
(2007)
Science
, vol.316
, Issue.5821
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
Zhong, L.W.4
-
7
-
-
79959500503
-
High-performance flat-panel solar thermoelectric generators with high thermal concentration
-
Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532-538 (2011).
-
(2011)
Nat. Mater.
, vol.10
, pp. 532-538
-
-
Kraemer, D.1
-
8
-
-
51749114885
-
Cooling heating, generating power, and recovering waste heat with thermoelectric systems
-
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457-1461 (2008).
-
(2008)
Science
, vol.321
, pp. 1457-1461
-
-
Bell, L.E.1
-
9
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
DOI 10.1038/35098012
-
Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597-602 (2001). (Pubitemid 32964053)
-
(2001)
Nature
, vol.413
, Issue.6856
, pp. 597-602
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'Quinn, B.4
-
10
-
-
84861958406
-
Electrocatalyst approaches and challenges for automotive fuel cells
-
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43-51 (2012).
-
(2012)
Nature
, vol.486
, pp. 43-51
-
-
Debe, M.K.1
-
11
-
-
20544433814
-
A thermally self-sustained micro solid-oxide fuel-cell stack with high power density
-
DOI 10.1038/nature03673
-
Shao, Z. et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435, 795-798 (2005). (Pubitemid 40839726)
-
(2005)
Nature
, vol.435
, Issue.7043
, pp. 795-798
-
-
Shao, Z.1
Haile, S.M.2
Ahn, J.3
Ronney, P.D.4
Zhan, Z.5
Barnett, S.A.6
-
12
-
-
0035891321
-
Materials for fuel-cell technologies
-
DOI 10.1038/35104620
-
Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345-352 (2001). (Pubitemid 33097817)
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 345-352
-
-
Steele, B.C.H.1
Heinzel, A.2
-
13
-
-
79551630550
-
Recent progress in MEMS electret generator for energy harvesting
-
Suzuki, Y. Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans. Electr. Electr. 6, 101-111 (2011).
-
(2011)
IEEJ Trans. Electr. Electr.
, vol.6
, pp. 101-111
-
-
Suzuki, Y.1
-
14
-
-
33846077160
-
Energy harvesting vibration sources for microsystems applications
-
DOI 10.1088/0957-0233/17/12/R01, PII S0957023306956343, R01
-
Beeby, S. P., Tudor, M. J. & White, N. M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175-R195 (2006). (Pubitemid 46069703)
-
(2006)
Measurement Science and Technology
, vol.17
, Issue.12
-
-
Beeby, S.P.1
Tudor, M.J.2
White, N.M.3
-
15
-
-
84866307475
-
Triboelectric-generator-driven pulse electrodeposition for micro-patterning
-
Zhu, G. et al. Triboelectric-generator-driven pulse electrodeposition for micro-patterning. Nano Lett. 12, 4960-4965 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 4960-4965
-
-
Zhu, G.1
-
16
-
-
24644452464
-
Generating electricity while walking with loads
-
Rome, L. C., Flynn, L., Goldman, E. M. & Yoo, T. D. Generating electricity while walking with loads. Science 309, 1725-1728 (2005).
-
(2005)
Science
, vol.309
, pp. 1725-1728
-
-
Rome, L.C.1
Flynn, L.2
Goldman, E.M.3
Yoo, T.D.4
-
17
-
-
38949118719
-
Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
-
DOI 10.1126/science.1149860
-
Donelan, J. M. et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319, 807-810 (2008). (Pubitemid 351225869)
-
(2008)
Science
, vol.319
, Issue.5864
, pp. 807-810
-
-
Donelan, J.M.1
Li, Q.2
Naing, V.3
Hoffer, J.A.4
Weber, D.J.5
Kuo, A.D.6
-
18
-
-
80052412997
-
Reverse electrowetting as a new approach to high-power energy harvesting
-
Krupenkin, T. & Taylor, J. A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2, 448 (2011).
-
(2011)
Nat. Commun.
, vol.2
, pp. 448
-
-
Krupenkin, T.1
Taylor, J.A.2
-
19
-
-
79952597094
-
Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons
-
Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331-1336 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 1331-1336
-
-
Qi, Y.1
-
20
-
-
61449128189
-
Nonlinear energy harvesting
-
Cottone, F., Vocca, H. & Gammaitoni, L. Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 080601
-
-
Cottone, F.1
Vocca, H.2
Gammaitoni, L.3
-
21
-
-
77956097448
-
Nanotechnology-enabled flexible and biocompatible energy harvesting
-
Qi, Y. & McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275-1285 (2010).
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1275-1285
-
-
Qi, Y.1
McAlpine, M.C.2
-
22
-
-
27144547214
-
The use of piezoelectric ceramics for electric power generation within orthopedic implants
-
DOI 10.1109/TMECH.2005.852482
-
Platt, S. R., Farritor, S., Garvin, K. & Haider, H. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans. Mechatronics 10, 455-461 (2005). (Pubitemid 41489327)
-
(2005)
IEEE/ASME Transactions on Mechatronics
, vol.10
, Issue.4
, pp. 455-461
-
-
Platt, S.R.1
Farritor, S.2
Garvin, K.3
Haider, H.4
-
23
-
-
77953310763
-
1.6V Nanogenerator for mechanical energy harvesting using PZT nanofibers
-
Chen, X., Xu, S., Yao, N. & Shi, Y. 1.6V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133-2137 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 2133-2137
-
-
Chen, X.1
Xu, S.2
Yao, N.3
Shi, Y.4
-
24
-
-
22844431664
-
MEMS power generator with transverse mode thin film PZT
-
DOI 10.1016/j.sna.2004.12.032, PII S0924424705000683
-
Jeon, Y. B., Sood, R., Jeong, J.-H. & Kim, S.-G. MEMS power generator with transverse mode thin film PZT. Sens. Actuat. A 122, 16-22 (2005). (Pubitemid 41037282)
-
(2005)
Sensors and Actuators, A: Physical
, vol.122
, Issue.1 SPEC. ISSUE
, pp. 16-22
-
-
Jeon, Y.B.1
Sood, R.2
Jeong, J.-H.3
Kim, S.-G.4
-
25
-
-
67649482443
-
A piezomagnetoelastic structure for broadband vibration energy harvesting
-
Erturk, A., Hoffmann, J. & Inman, D. J. A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 254102
-
-
Erturk, A.1
Hoffmann, J.2
Inman, D.J.3
-
26
-
-
84876541745
-
Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
-
Bai, P. et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7, 3713-3719 (2013).
-
ACS Nano
, vol.7
, pp. 3713-3719
-
-
Bai, P.1
-
27
-
-
84887481607
-
Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
-
Chen, J. et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094-6099 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 6094-6099
-
-
Chen, J.1
-
28
-
-
84887009033
-
Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
-
Yang, Y. et al. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7, 9461-9468 (2013).
-
ACS Nano
, vol.7
, pp. 9461-9468
-
-
Yang, Y.1
-
29
-
-
84877283238
-
Linear-grating triboelectric generator based on sliding electrification
-
Zhu, G. et al. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13, 2282-2289 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 2282-2289
-
-
Zhu, G.1
-
30
-
-
84879092885
-
Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
-
Lin, L. et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916-2923 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 2916-2923
-
-
Lin, L.1
-
31
-
-
84858142463
-
Flexible triboelectric generator
-
Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energy 1, 328-334 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.-R.1
Tian, Z.-Q.2
Wang, Z.L.3
-
32
-
-
84887999844
-
Theory of sliding-mode triboelectric nanogenerator
-
Niu, S. et al. Theory of sliding-mode triboelectric nanogenerator. Adv. Mater. 43, 6184-6193 (2013).
-
(2013)
Adv. Mater.
, vol.43
, pp. 6184-6193
-
-
Niu, S.1
-
34
-
-
36549096757
-
Adhesion of metals to spin-coated fluorocarbon polymer films
-
Kim, Y.-K., Chang, C.-A. & Schrott, A. G. Adhesion of metals to spin-coated fluorocarbon polymer films. J. Appl. Phys. 67, 251-254 (1990).
-
(1990)
J. Appl. Phys.
, vol.67
, pp. 251-254
-
-
Kim, Y.-K.1
Chang, C.-A.2
Schrott, A.G.3
-
35
-
-
0028460566
-
Plasma modification of polymer surfaces for adhesion improvement
-
Egitto, F. D. & Matienzo, L. J. Plasma modification of polymer surfaces for adhesion improvement. IBM J. Res. Develop. 38, 423-439 (1994).
-
(1994)
IBM J. Res. Develop.
, vol.38
, pp. 423-439
-
-
Egitto, F.D.1
Matienzo, L.J.2
|