-
1
-
-
84890855226
-
"Green" electronics: Biodegradable and biocompatible materials and devices for sustainable future
-
M. Irimia-Vladu, "Green" electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588-610 (2014)
-
(2014)
Chem. Soc. Rev
, vol.43
, pp. 588-610
-
-
Irimia-Vladu, M.1
-
2
-
-
84922572154
-
Electronics for the human body
-
J. A. Rogers, Electronics for the human body. JAMA 313, 561-562 (2015).
-
(2015)
JAMA
, vol.313
, pp. 561-562
-
-
Rogers, J.A.1
-
3
-
-
84958155009
-
Implantable devices: Issues and challenges
-
K. Bazaka, M. V. Jacob, Implantable devices: Issues and challenges. Electronics 2, 1-34 (2013).
-
(2013)
Electronics
, vol.2
, pp. 1-34
-
-
Bazaka, K.1
Jacob, M.V.2
-
4
-
-
35348984409
-
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
-
B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885-889 (2007).
-
(2007)
Nature
, vol.449
, pp. 885-889
-
-
Tian, B.1
Zheng, X.2
Kempa, T.J.3
Fang, Y.4
Yu, N.5
Yu, G.6
Huang, J.7
Lieber, C.M.8
-
5
-
-
77049094502
-
Organic thin-film transistors fabricated on resorbable biomaterial substrates
-
C. J. Bettinger, Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651-655 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. 651-655
-
-
Bettinger, C.J.1
Bao, Z.2
-
6
-
-
78650164953
-
Biocompatible and biodegradable materials for organic field-effect transistors
-
M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069-4076 (2010).
-
(2010)
Adv. Funct. Mater
, vol.20
, pp. 4069-4076
-
-
Irimia-Vladu, M.1
Troshin, P.A.2
Reisinger, M.3
Shmygleva, L.4
Kanbur, Y.5
Schwabegger, G.6
Bodea, M.7
Schwödiauer, R.8
Mumyatov, A.9
Fergus, J.W.10
Razumov, V.F.11
Sitter, H.12
Sariciftci, N.S.13
Bauer, S.14
-
7
-
-
80051607518
-
Epidermal electronics
-
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Epidermal electronics. Science 333, 838-843 (2011).
-
(2011)
Science
, vol.333
, pp. 838-843
-
-
Kim, D.-H.1
Lu, N.2
Ma, R.3
Kim, Y.-S.4
Kim, R.-H.5
Wang, S.6
Wu, J.7
Won, S.M.8
Tao, H.9
Islam, A.10
Yu, K.J.11
Kim, T.12
Chowdhury, R.13
Ying, M.14
Xu, L.15
Li, M.16
Chung, H.-J.17
Keum, H.18
McCormick, M.19
Liu, P.20
Zhang, Y.-W.21
Omenetto, F.G.22
Huang, Y.23
Coleman, T.24
Rogers, J.A.25
more..
-
8
-
-
77955111796
-
New opportunities for an ancient material
-
F. G. Omenetto, D. L. Kaplan, New opportunities for an ancient material. Science 329, 528-531 (2010).
-
(2010)
Science
, vol.329
, pp. 528-531
-
-
Omenetto, F.G.1
Kaplan, D.L.2
-
9
-
-
77954275027
-
Muscle-driven in vivo nanogenerator
-
Z. Li, G. Zhu, R. Yang, A. C. Wang, Z. L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534-2537 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. 2534-2537
-
-
Li, Z.1
Zhu, G.2
Yang, R.3
Wang, A.C.4
Wang, Z.L.5
-
10
-
-
84866753558
-
A physically transient form of silicon electronics
-
S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, J. A. Rogers, A physically transient form of silicon electronics. Science 337, 1640-1644 (2012).
-
(2012)
Science
, vol.337
, pp. 1640-1644
-
-
Hwang, S.-W.1
Tao, H.2
Kim, D.-H.3
Cheng, H.4
Song, J.-K.5
Rill, E.6
Brenckle, M.A.7
Panilaitis, B.8
Won, S.M.9
Kim, Y.-S.10
Song, Y.M.11
Yu, K.J.12
Ameen, A.13
Li, R.14
Su, Y.15
Yang, M.16
Kaplan, D.L.17
Zakin, M.R.18
Slepian, M.J.19
Huang, Y.20
Omenetto, F.G.21
Rogers, J.A.22
more..
-
11
-
-
77954581072
-
Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics
-
D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511-517 (2010).
-
(2010)
Nat. Mater
, vol.9
, pp. 511-517
-
-
Kim, D.-H.1
Viventi, J.2
Amsden, J.J.3
Xiao, J.4
Vigeland, L.5
Kim, Y.-S.6
Blanco, J.A.7
Panilaitis, B.8
Frechette, E.S.9
Contreras, D.10
Kaplan, D.L.11
Omenetto, F.G.12
Huang, Y.13
Hwang, K.-C.14
Zakin, M.R.15
Litt, B.16
Rogers, J.A.17
-
13
-
-
79953793607
-
Flexible organic thin-film transistors with silk fibroin as the gate dielectric
-
C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 23, 1630-1634 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 1630-1634
-
-
Wang, C.-H.1
Hsieh, C.-Y.2
Hwang, J.-C.3
-
14
-
-
77957746914
-
Environmentally sustainable organic field effect transistors
-
M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, N. S. Sariciftci, Environmentally sustainable organic field effect transistors. Org. Electron. 11, 1974-1990 (2010).
-
(2010)
Org. Electron
, vol.11
, pp. 1974-1990
-
-
Irimia-Vladu, M.1
Troshin, P.A.2
Reisinger, M.3
Schwabegger, G.4
Ullah, M.5
Schwoediauer, R.6
Mumyatov, A.7
Bodea, M.8
Fergus, J.W.9
Razumov, V.F.10
Sitter, H.11
Bauer, S.12
Sariciftci, N.S.13
-
15
-
-
84902375570
-
High-performance biodegradable/transient electronics on biodegradable polymers
-
S.-W. Hwang, J.-K. Song, X. Huang, H. Cheng, S.-K. Kang, B. H. Kim, J.-H. Kim, S. Yu, Y. Huang, J. A. Rogers, High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905-3911 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 3905-3911
-
-
Hwang, S.-W.1
Song, J.-K.2
Huang, X.3
Cheng, H.4
Kang, S.-K.5
Kim, B.H.6
Kim, J.-H.7
Yu, S.8
Huang, Y.9
Rogers, J.A.10
-
16
-
-
84929168739
-
Biodegradable elastomers and silicon nanomembranes/ nanoribbons for stretchable, transient electronics, and biosensors
-
S.-W. Hwang, C. H. Lee, H. Cheng, J.-W. Jeong, S.-K. Kang, J.-H. Kim, J. Shin, J. Yang, Z. Liu, G. A. Ameer, Y. Huang, J. A. Rogers, Biodegradable elastomers and silicon nanomembranes/ nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15, 2801-2808 (2015).
-
(2015)
Nano Lett
, vol.15
, pp. 2801-2808
-
-
Hwang, S.-W.1
Lee, C.H.2
Cheng, H.3
Jeong, J.-W.4
Kang, S.-K.5
Kim, J.-H.6
Shin, J.7
Yang, J.8
Liu, Z.9
Ameer, G.A.10
Huang, Y.11
Rogers, J.A.12
-
17
-
-
84885970958
-
Transient, biocompatible electronics and energy harvesters based on ZnO
-
C. Dagdeviren, S.-W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, J. A. Rogers, Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9, 3398-3404 (2013).
-
(2013)
Small
, vol.9
, pp. 3398-3404
-
-
Dagdeviren, C.1
Hwang, S.-W.2
Su, Y.3
Kim, S.4
Cheng, H.5
Gur, O.6
Haney, R.7
Omenetto, F.G.8
Huang, Y.9
Rogers, J.A.10
-
18
-
-
84902752899
-
Energy harvesting for the implantable biomedical devices: Issues and challenges
-
M. A. Hannan, S. Mutashar, S. A. Samad, A. Hussain, Energy harvesting for the implantable biomedical devices: Issues and challenges. Biomed. Eng. Online 13, 79 (2014).
-
(2014)
Biomed. Eng. Online
, vol.13
, pp. 79
-
-
Hannan, M.A.1
Mutashar, S.2
Samad, S.A.3
Hussain, A.4
-
19
-
-
0037008507
-
Biodegradable polymers for the environment
-
R. A. Gross, B. Kalra, Biodegradable polymers for the environment. Science 297, 803-807 (2002).
-
(2002)
Science
, vol.297
, pp. 803-807
-
-
Gross, R.A.1
Kalra, B.2
-
20
-
-
84902195414
-
Biodegradable poly(ester amide)s-A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications
-
A. C. Fonseca, M. H. Gil, P. N. Simões, Biodegradable poly(ester amide)s-A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci. 39, 1291-1311 (2014).
-
(2014)
Prog. Polym. Sci
, vol.39
, pp. 1291-1311
-
-
Fonseca, A.C.1
Gil, M.H.2
Simões, P.N.3
-
21
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Z. L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533-9557 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
22
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
Z. L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energ. Environ. Sci. 8, 2250-2282 (2015).
-
(2015)
Energ. Environ. Sci
, vol.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
23
-
-
84887905526
-
Water-solid surface contact electrification and its use for harvesting liquid-wave energy
-
Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z. L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. Engl. 52, 12545-12549 (2013).
-
(2013)
Angew. Chem. Int. Ed. Engl
, vol.52
, pp. 12545-12549
-
-
Lin, Z.-H.1
Cheng, G.2
Lin, L.3
Lee, S.4
Wang, Z.L.5
-
24
-
-
84887481607
-
Harmonic-resonatorbased triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
-
J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.-C. Hou, Z. L. Wang, Harmonic-resonatorbased triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094-6099 (2013).
-
(2013)
Adv. Mater
, vol.25
, pp. 6094-6099
-
-
Chen, J.1
Zhu, G.2
Yang, W.3
Jing, Q.4
Bai, P.5
Yang, Y.6
Hou, T.-C.7
Wang, Z.L.8
-
25
-
-
84906875531
-
In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
-
Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26, 5851-5856 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 5851-5856
-
-
Zheng, Q.1
Shi, B.2
Fan, F.3
Wang, X.4
Yan, L.5
Yuan, W.6
Wang, S.7
Liu, H.8
Li, Z.9
Wang, Z.L.10
-
26
-
-
84913554665
-
Triboelectric nanogenerators as self-powered active sensors
-
S. Wang, L. Lin, Z. L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436-462 (2015).
-
(2015)
Nano Energy
, vol.11
, pp. 436-462
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
27
-
-
84874967575
-
Frequencymultiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li, W. Wang, H.-X. Zhang, Frequencymultiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168-1172 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 1168-1172
-
-
Zhang, X.-S.1
Han, M.-D.2
Wang, R.-X.3
Zhu, F.-Y.4
Li, Z.-H.5
Wang, W.6
Zhang, H.-X.7
-
28
-
-
84902203625
-
Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
-
C. Zhang, W. Tang, C. Han, F. Fan, Z. L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580-3591 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 3580-3591
-
-
Zhang, C.1
Tang, W.2
Han, C.3
Fan, F.4
Wang, Z.L.5
-
29
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109-3114 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 3109-3114
-
-
Fan, F.-R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
30
-
-
84866307475
-
Triboelectric-generator-driven pulse electrodeposition for micropatterning
-
G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, Z. L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960-4965 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 4960-4965
-
-
Zhu, G.1
Pan, C.2
Guo, W.3
Chen, C.-Y.4
Zhou, Y.5
Yu, R.6
Wang, Z.L.7
-
31
-
-
84916597286
-
Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
-
C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung, K. J. Lee, Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14, 7031-7038, (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 7031-7038
-
-
Jeong, C.K.1
Baek, K.M.2
Niu, S.3
Nam, T.W.4
Hur, Y.H.5
Park, D.Y.6
Hwang, G.-T.7
Byun, M.8
Wang, Z.L.9
Jung, Y.S.10
Lee, K.J.11
-
32
-
-
78649684180
-
Application of low-frequency alternating current electric fields via interdigitated electrodes: Effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells
-
S. D. McCullen, J. P. McQuilling, R. M. Grossfeld, J. L. Lubischer, L. I. Clarke, E. G. Loboa, Application of low-frequency alternating current electric fields via interdigitated electrodes: Effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng. Part C Methods 16, 1377-1386 (2010).
-
(2010)
Tissue Eng. Part C Methods
, vol.16
, pp. 1377-1386
-
-
McCullen, S.D.1
McQuilling, J.P.2
Grossfeld, R.M.3
Lubischer, J.L.4
Clarke, L.I.5
Loboa, E.G.6
-
33
-
-
50649115491
-
Polymer biodegradation: Mechanisms and estimation techniques
-
N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.-E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere 73, 429-442 (2008).
-
(2008)
Chemosphere
, vol.73
, pp. 429-442
-
-
Lucas, N.1
Bienaime, C.2
Belloy, C.3
Queneudec, M.4
Silvestre, F.5
Nava-Saucedo, J.-E.6
-
34
-
-
77952916535
-
Polymer biodegradation and biodegradable polymers-A review
-
K. Leja, G. Lewandowicz, Polymer biodegradation and biodegradable polymers-A review. Polish J. of Environ. Stud. 19, 255-266 (2010).
-
(2010)
Polish J. of Environ. Stud
, vol.19
, pp. 255-266
-
-
Leja, K.1
Lewandowicz, G.2
-
35
-
-
84877018587
-
How smart do biomaterials need to be? A translational science and clinical point of view
-
B. M. Holzapfel, J. C. Reichert, J.-T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, D. W. Hutmacher, How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliver. Rev. 65, 581-603 (2013).
-
(2013)
Adv. Drug Deliver. Rev
, vol.65
, pp. 581-603
-
-
Holzapfel, B.M.1
Reichert, J.C.2
Schantz, J.-T.3
Gbureck, U.4
Rackwitz, L.5
Nöth, U.6
Jakob, F.7
Rudert, M.8
Groll, J.9
Hutmacher, D.W.10
-
36
-
-
0036254733
-
In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate)
-
T. Freier, C. Kunze, C. Nischan, S. Kramer, K. Sternberg, M. Saß, U. T. Hopt, K.-P. Schmitz, In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 23, 2649-2657 (2002).
-
(2002)
Biomaterials
, vol.23
, pp. 2649-2657
-
-
Freier, T.1
Kunze, C.2
Nischan, C.3
Kramer, S.4
Sternberg, K.5
Saß, M.6
Hopt, U.T.7
Schmitz, K.-P.8
-
37
-
-
77957588918
-
The return of a forgotten polymer-Polycaprolactone in the 21st century
-
M. A. Woodruff, D. W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256 (2010).
-
(2010)
Prog. Polym. Sci
, vol.35
, pp. 1217-1256
-
-
Woodruff, M.A.1
Hutmacher, D.W.2
-
38
-
-
84891502959
-
Biodegradable poly-epsilon-caprolactone (Pcl) for tissue engineering applications: A review
-
M. Abedalwafa, F. Wang, L. Wang, C. Li, Biodegradable poly-epsilon-caprolactone (Pcl) for tissue engineering applications: A review. Rev. Adv. Mater. Sci. 34, 123-140 (2013).
-
(2013)
Rev. Adv. Mater. Sci
, vol.34
, pp. 123-140
-
-
Abedalwafa, M.1
Wang, F.2
Wang, L.3
Li, C.4
-
39
-
-
84873397395
-
Electrical stimulation in tissue regeneration
-
G. Gargiulo, Ed. (InTech, Rijeka, Croatia)
-
S. Meng, M. Rouabhia, Z. Zhang, Electrical stimulation in tissue regeneration, in Applied Biomedical Engineering, G. Gargiulo, Ed. (InTech, Rijeka, Croatia, 2011).
-
(2011)
Applied Biomedical Engineering
-
-
Meng, S.1
Rouabhia, M.2
Zhang, Z.3
-
40
-
-
27744546245
-
The role of electrical stimulation in bone repair
-
D. M. Ciombor, R. K. Aaron, The role of electrical stimulation in bone repair. Foot Ankle Clin. 10, 579-593 (2005).
-
(2005)
Foot Ankle Clin
, vol.10
, pp. 579-593
-
-
Ciombor, D.M.1
Aaron, R.K.2
-
41
-
-
33747134769
-
Electrical signals control wound healing through phosphatidylinositol- 3-OH kinase-g and PTEN
-
M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J. V. Forrester, H. R. Bourne, P. N. Devreotes, C. D. McCaig, J. M. Penninger, Electrical signals control wound healing through phosphatidylinositol- 3-OH kinase-g and PTEN. Nature 442, 457-460 (2006).
-
(2006)
Nature
, vol.442
, pp. 457-460
-
-
Zhao, M.1
Song, B.2
Pu, J.3
Wada, T.4
Reid, B.5
Tai, G.6
Wang, F.7
Guo, A.8
Walczysko, P.9
Gu, Y.10
Sasaki, T.11
Suzuki, A.12
Forrester, J.V.13
Bourne, H.R.14
Devreotes, P.N.15
McCaig, C.D.16
Penninger, J.M.17
-
42
-
-
33748627750
-
Electrical stimulation therapies for spinal fusions: Current concepts
-
J. C. Gan, P. A. Glazer, Electrical stimulation therapies for spinal fusions: Current concepts. Eur. Spine J. 15, 1301-1311 (2006).
-
(2006)
Eur. Spine J
, vol.15
, pp. 1301-1311
-
-
Gan, J.C.1
Glazer, P.A.2
-
43
-
-
0021888164
-
Treatment of recalcitrant non-union with a capacitively coupled electrical-field. A preliminary report
-
C. T. Brighton, S. R. Pollack, Treatment of recalcitrant non-union with a capacitively coupled electrical-field. A preliminary report. J. Bone Joint Surg. Am. 67, 577-585 (1985).
-
(1985)
J. Bone Joint Surg. Am
, vol.67
, pp. 577-585
-
-
Brighton, C.T.1
Pollack, S.R.2
-
44
-
-
84883170799
-
Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure
-
H. T. Nguyen, C. Wei, J. K. Chow, L. Nguy, H. K. Nguyen, C. E. Schmidt, Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure. J. Neural Eng. 10, 046011 (2013).
-
(2013)
J. Neural Eng
, vol.10
, pp. 046011
-
-
Nguyen, H.T.1
Wei, C.2
Chow, J.K.3
Nguy, L.4
Nguyen, H.K.5
Schmidt, C.E.6
-
45
-
-
55049137072
-
Direct-current electrical field guides neuronal stem/progenitor cell migration
-
L. Li, Y. H. El-Hayek, B. Liu, Y. Chen, E. Gomez, X. Wu, K. Ning, L. Li, N. Chang, L. Zhang, Z. Wang, X. Hu, Q. Wan, Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26, 2193-2200 (2008).
-
(2008)
Stem Cells
, vol.26
, pp. 2193-2200
-
-
Li, L.1
El-Hayek, Y.H.2
Liu, B.3
Chen, Y.4
Gomez, E.5
Wu, X.6
Ning, K.7
Li, L.8
Chang, N.9
Zhang, L.10
Wang, Z.11
Hu, X.12
Wan, Q.13
-
46
-
-
84928949733
-
Nanopatterned textile-based wearable triboelectric nanogenerator
-
W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9, 3501-3509 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 3501-3509
-
-
Seung, W.1
Gupta, M.K.2
Lee, K.Y.3
Shin, K.-S.4
Lee, J.-H.5
Kim, T.Y.6
Kim, S.7
Lin, J.8
Kim, J.H.9
Kim, S.-W.10
|