메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1-475

Computer age statistical inference: Algorithms, evidence, and data science

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85033778850     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781316576533     Document Type: Book
Times cited : (895)

References (194)
  • 3
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akadémiai Kiadó, Budapest
    • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. Pages 267-281 of: Second International Symposium on Information Theory (Tsahkadsor, 1971). Akadémiai Kiadó, Budapest.
    • (1973) Second International Symposium on Information Theory (Tsahkadsor, 1971) , pp. 267-281
    • Akaike, H.1
  • 7
    • 84954411732 scopus 로고    scopus 로고
    • The Reverend Thomas Bayes, FRS: A biography to celebrate the tercentenary of his birth
    • With comments and a rejoinder by the author
    • Bellhouse, D. R. 2004. The Reverend Thomas Bayes, FRS: A biography to celebrate the tercentenary of his birth. Statist. Sci., 19(1), 3-43. With comments and a rejoinder by the author.
    • (2004) Statist. Sci. , vol.19 , Issue.1 , pp. 3-43
    • Bellhouse, D.R.1
  • 9
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1), 289-300.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 10
    • 14944365889 scopus 로고    scopus 로고
    • False discovery rate-adjusted multiple confidence intervals for selected parameters
    • Benjamini, Y., and Yekutieli, D. 2005. False discovery rate-adjusted multiple confidence intervals for selected parameters. J. Amer. Statist. Assoc., 100(469), 71-93.
    • (2005) J. Amer. Statist. Assoc. , vol.100 , Issue.469 , pp. 71-93
    • Benjamini, Y.1    Yekutieli, D.2
  • 11
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • (electronic)
    • Berger, J. O. 2006. The case for objective Bayesian analysis. Bayesian Anal., 1(3), 385-402 (electronic).
    • (2006) Bayesian Anal. , vol.1 , Issue.3 , pp. 385-402
    • Berger, J.O.1
  • 12
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • Berger, J. O., and Pericchi, L. R. 1996. The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc., 91(433), 109-122.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.433 , pp. 109-122
    • Berger, J.O.1    Pericchi, L.R.2
  • 15
    • 84946638733 scopus 로고
    • Application of the logistic function to bio-assay
    • Berkson, J. 1944. Application of the logistic function to bio-assay. J. Amer. Statist. Assoc., 39(227), 357-365.
    • (1944) J. Amer. Statist. Assoc. , vol.39 , Issue.227 , pp. 357-365
    • Berkson, J.1
  • 16
    • 0002183088 scopus 로고
    • Reference posterior distributions for Bayesian inference
    • With discussion
    • Bernardo, J. M. 1979. Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. Ser. B, 41(2), 113-147. With discussion.
    • (1979) J. Roy. Statist. Soc. Ser. B , vol.41 , Issue.2 , pp. 113-147
    • Bernardo, J.M.1
  • 17
    • 0001638299 scopus 로고
    • The detection of partial association. I. The 2*2 case
    • Birch, M.W. 1964. The detection of partial association. I. The 2*2 case. J. Roy. Statist. Soc. Ser. B, 26(2), 313-324.
    • (1964) J. Roy. Statist. Soc. Ser. B , vol.26 , Issue.2 , pp. 313-324
    • Birch, M.W.1
  • 19
    • 0001302224 scopus 로고
    • A note on differentials and the CLT and LIL for statistical functions, with application to M-estimates
    • Boos, D. D., and Serfling, R. J. 1980. A note on differentials and the CLT and LIL for statistical functions, with application to M-estimates. Ann. Statist., 8(3), 618-624.
    • (1980) Ann. Statist. , vol.8 , Issue.3 , pp. 618-624
    • Boos, D.D.1    Serfling, R.J.2
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Mach. Learn., 24(2), 123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman, L. 1998. Arcing classifiers (with discussion). Annals of Statistics, 26, 801-849.
    • (1998) Annals of Statistics , vol.26 , pp. 801-849
    • Breiman, L.1
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 27
    • 0004269485 scopus 로고
    • Chapman & Hall Computer Science Series. Chapman & Hall
    • Chambers, J. M., and Hastie, T. J. (eds). 1993. Statistical Models in S. Chapman & Hall Computer Science Series. Chapman & Hall.
    • (1993) Statistical Models in S
    • Chambers, J.M.1    Hastie, T.J.2
  • 28
    • 84954964873 scopus 로고
    • LOWESS: A program for smoothing scatterplots by robust locally weighted regression
    • Cleveland, W. S. 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Statist., 35(1), 54.
    • (1981) Amer. Statist. , vol.35 , Issue.1 , pp. 54
    • Cleveland, W.S.1
  • 29
    • 0000209388 scopus 로고
    • The regression analysis of binary sequences
    • Cox, D. R. 1958. The regression analysis of binary sequences. J. Roy. Statist. Soc. Ser. B, 20, 215-242.
    • (1958) J. Roy. Statist. Soc. Ser. B , vol.20 , pp. 215-242
    • Cox, D.R.1
  • 30
    • 0003667273 scopus 로고
    • Methuen’s Monographs on Applied Probability and Statistics. Methuen & Co
    • Cox, D. R. 1970. The Analysis of Binary Data. Methuen’s Monographs on Applied Probability and Statistics. Methuen & Co.
    • (1970) The Analysis of Binary Data
    • Cox, D.R.1
  • 31
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox, D. R. 1972. Regression models and life-tables. J. Roy. Statist. Soc. Ser. B, 34(2), 187-220.
    • (1972) J. Roy. Statist. Soc. Ser. B , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 32
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox, D. R. 1975. Partial likelihood. Biometrika, 62(2), 269-276.
    • (1975) Biometrika , vol.62 , Issue.2 , pp. 269-276
    • Cox, D.R.1
  • 34
    • 0002738159 scopus 로고
    • Parameter orthogonality and approximate conditional inference
    • With a discussion
    • Cox, D. R., and Reid, N. 1987. Parameter orthogonality and approximate conditional inference. J. Roy. Statist. Soc. Ser. B, 49(1), 1-39. With a discussion.
    • (1987) J. Roy. Statist. Soc. Ser. B , vol.49 , Issue.1 , pp. 1-39
    • Cox, D.R.1    Reid, N.2
  • 35
    • 70350339862 scopus 로고
    • Asymptotic normality of a new nonparametric statistic for use in organ transplant studies
    • Crowley, J. 1974. Asymptotic normality of a new nonparametric statistic for use in organ transplant studies. J. Amer. Statist. Assoc., 69(348), 1006-1011.
    • (1974) J. Amer. Statist. Assoc. , vol.69 , Issue.348 , pp. 1006-1011
    • Crowley, J.1
  • 38
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1), 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 39
    • 0000811835 scopus 로고
    • Conjugate priors for exponential families
    • Diaconis, P., and Ylvisaker, D. 1979. Conjugate priors for exponential families. Ann. Statist., 7(2), 269-281.
    • (1979) Ann. Statist. , vol.7 , Issue.2 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 40
    • 0001468152 scopus 로고
    • More accurate confidence intervals in exponential families
    • DiCiccio, T., and Efron, B. 1992. More accurate confidence intervals in exponential families. Biometrika, 79(2), 231-245.
    • (1992) Biometrika , vol.79 , Issue.2 , pp. 231-245
    • DiCiccio, T.1    Efron, B.2
  • 42
    • 0004128472 scopus 로고
    • Expanded edn. Johns Hopkins University Press. Revised reprint of the 1972 original
    • Edwards, A. W. F. 1992. Likelihood. Expanded edn. Johns Hopkins University Press. Revised reprint of the 1972 original.
    • (1992) Likelihood
    • Edwards, A.W.F.1
  • 44
    • 0000551847 scopus 로고
    • Defining the curvature of a statistical problem (with applications to second order efficiency)
    • With discussion and a reply by the author
    • Efron, B. 1975. Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Statist., 3(6), 1189-1242. With discussion and a reply by the author.
    • (1975) Ann. Statist. , vol.3 , Issue.6 , pp. 1189-1242
    • Efron, B.1
  • 45
    • 84950651862 scopus 로고
    • The efficiency of Cox’s likelihood function for censored data
    • Efron, B. 1977. The efficiency of Cox’s likelihood function for censored data. J. Amer. Statist. Assoc., 72(359), 557-565.
    • (1977) J. Amer. Statist. Assoc. , vol.72 , Issue.359 , pp. 557-565
    • Efron, B.1
  • 46
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1), 1-26.
    • (1979) Ann. Statist. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 47
    • 85047389945 scopus 로고
    • CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM)
    • Efron, B. 1982. The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM).
    • (1982) The Jackknife, the Bootstrap and Other Resampling Plans
    • Efron, B.1
  • 48
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on crossvalidation
    • Efron, B. 1983. Estimating the error rate of a prediction rule: Improvement on crossvalidation. J. Amer. Statist. Assoc., 78(382), 316-331.
    • (1983) J. Amer. Statist. Assoc. , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 49
    • 77956887385 scopus 로고
    • Bootstrap confidence intervals for a class of parametric problems
    • Efron, B. 1985. Bootstrap confidence intervals for a class of parametric problems. Biometrika, 72(1), 45-58.
    • (1985) Biometrika , vol.72 , Issue.1 , pp. 45-58
    • Efron, B.1
  • 50
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron, B. 1986. How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc., 81(394), 461-470.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , Issue.394 , pp. 461-470
    • Efron, B.1
  • 51
    • 84923818429 scopus 로고
    • Better bootstrap confidence intervals
    • With comments and a rejoinder by the author
    • Efron, B. 1987. Better bootstrap confidence intervals. J. Amer. Statist. Assoc., 82(397), 171-200. With comments and a rejoinder by the author.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , Issue.397 , pp. 171-200
    • Efron, B.1
  • 52
    • 84950442000 scopus 로고
    • Logistic regression, survival analysis, and the Kaplan-Meier curve
    • Efron, B. 1988. Logistic regression, survival analysis, and the Kaplan-Meier curve. J. Amer. Statist. Assoc., 83(402), 414-425.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , Issue.402 , pp. 414-425
    • Efron, B.1
  • 53
    • 0001777054 scopus 로고
    • Bayes and likelihood calculations from confidence intervals
    • Efron, B. 1993. Bayes and likelihood calculations from confidence intervals. Biometrika, 80(1), 3-26.
    • (1993) Biometrika , vol.80 , Issue.1 , pp. 3-26
    • Efron, B.1
  • 54
    • 0346072186 scopus 로고    scopus 로고
    • R. A. Fisher in the 21st Century (invited paper presented at the 1996 R. A. Fisher Lecture)
    • With comments and a rejoinder by the author
    • Efron, B. 1998. R. A. Fisher in the 21st Century (invited paper presented at the 1996 R. A. Fisher Lecture). Statist. Sci., 13(2), 95-122. With comments and a rejoinder by the author.
    • (1998) Statist. Sci. , vol.13 , Issue.2 , pp. 95-122
    • Efron, B.1
  • 55
    • 4944261923 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and crossvalidation
    • With comments and a rejoinder by the author
    • Efron, B. 2004. The estimation of prediction error: Covariance penalties and crossvalidation. J. Amer. Statist. Assoc., 99(467), 619-642. With comments and a rejoinder by the author.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , Issue.467 , pp. 619-642
    • Efron, B.1
  • 57
    • 84856005992 scopus 로고    scopus 로고
    • Tweedie’s formula and selection bias
    • Efron, B. 2011. Tweedie’s formula and selection bias. J. Amer. Statist. Assoc., 106(496), 1602-1614.
    • (2011) J. Amer. Statist. Assoc. , vol.106 , Issue.496 , pp. 1602-1614
    • Efron, B.1
  • 58
    • 84907532168 scopus 로고    scopus 로고
    • Estimation and accuracy after model selection
    • Efron, B. 2014a. Estimation and accuracy after model selection. J. Amer. Statist. Assoc., 109(507), 991-1007.
    • (2014) J. Amer. Statist. Assoc. , vol.109 , Issue.507 , pp. 991-1007
    • Efron, B.1
  • 59
    • 84907193685 scopus 로고    scopus 로고
    • Two modeling strategies for empirical Bayes estimation
    • Efron, B. 2014b. Two modeling strategies for empirical Bayes estimation. Statist. Sci., 29(2), 285-301.
    • (2014) Statist. Sci. , vol.29 , Issue.2 , pp. 285-301
    • Efron, B.1
  • 60
    • 84929224364 scopus 로고    scopus 로고
    • Frequentist accuracy of Bayesian estimates
    • Efron, B. 2015. Frequentist accuracy of Bayesian estimates. J. Roy. Statist. Soc. Ser. B, 77(3), 617-646.
    • (2015) J. Roy. Statist. Soc. Ser. B , vol.77 , Issue.3 , pp. 617-646
    • Efron, B.1
  • 61
    • 84960130123 scopus 로고    scopus 로고
    • Empirical Bayes deconvolution estimates
    • Efron, B. 2016. Empirical Bayes deconvolution estimates. Biometrika, 103(1), 1-20.
    • (2016) Biometrika , vol.103 , Issue.1 , pp. 1-20
    • Efron, B.1
  • 62
    • 84950442333 scopus 로고
    • Compliance as an explanatory variable in clinical trials
    • Efron, B., and Feldman, D. 1991. Compliance as an explanatory variable in clinical trials. J. Amer. Statist. Assoc., 86(413), 9-17.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , Issue.413 , pp. 9-17
    • Efron, B.1    Feldman, D.2
  • 63
    • 23044480850 scopus 로고    scopus 로고
    • Scales of evidence for model selection: Fisher versus Jeffreys
    • IMS Lecture Notes Monograph Series, Beachwood, OH: Institute of Mathematics and Statististics. With discussion and a rejoinder by the authors
    • Efron, B., and Gous, A. 2001. Scales of evidence for model selection: Fisher versus Jeffreys. Pages 208-256 of: Model Selection. IMS Lecture Notes Monograph Series, vol. 38. Beachwood, OH: Institute of Mathematics and Statististics. With discussion and a rejoinder by the authors.
    • (2001) Model Selection , vol.38 , pp. 208-256
    • Efron, B.1    Gous, A.2
  • 64
    • 0018115641 scopus 로고
    • Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information
    • With comments and a reply by the authors
    • Efron, B., and Hinkley, D. V. 1978. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika, 65(3), 457-487. With comments and a reply by the authors.
    • (1978) Biometrika , vol.65 , Issue.3 , pp. 457-487
    • Efron, B.1    Hinkley, D.V.2
  • 65
    • 0000310469 scopus 로고
    • Limiting the risk of Bayes and empirical Bayes estimators. II. The empirical Bayes case
    • Efron, B., and Morris, C. 1972. Limiting the risk of Bayes and empirical Bayes estimators. II. The empirical Bayes case. J. Amer. Statist. Assoc., 67, 130-139.
    • (1972) J. Amer. Statist. Assoc. , vol.67 , pp. 130-139
    • Efron, B.1    Morris, C.2
  • 66
    • 0000129805 scopus 로고
    • Stein’s paradox in statistics
    • Efron, B., and Morris, C. 1977. Stein’s paradox in statistics. Scientific American, 236(5), 119-127.
    • (1977) Scientific American , vol.236 , Issue.5 , pp. 119-127
    • Efron, B.1    Morris, C.2
  • 67
    • 11944253444 scopus 로고
    • A simple test of independence for truncated data with applications to redshift surveys
    • Nov
    • Efron, B., and Petrosian, V. 1992. A simple test of independence for truncated data with applications to redshift surveys. Astrophys. J., 399(Nov), 345-352.
    • (1992) Astrophys. J. , vol.399 , pp. 345-352
    • Efron, B.1    Petrosian, V.2
  • 68
    • 0001368656 scopus 로고
    • The jackknife estimate of variance
    • Efron, B., and Stein, C. 1981. The jackknife estimate of variance. Ann. Statist., 9(3), 586-596.
    • (1981) Ann. Statist. , vol.9 , Issue.3 , pp. 586-596
    • Efron, B.1    Stein, C.2
  • 69
    • 0017139943 scopus 로고
    • Estimating the number of unseen species: How many words did Shakespeare know?
    • Efron, B., and Thisted, R. 1976. Estimating the number of unseen species: How many words did Shakespeare know? Biometrika, 63(3), 435-447.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 435-447
    • Efron, B.1    Thisted, R.2
  • 71
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ bootstrap method
    • Efron, B., and Tibshirani, R. 1997. Improvements on cross-validation: The.632+ bootstrap method. J. Amer. Statist. Assoc., 92(438), 548-560.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 72
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • with discussion, and a rejoinder by the authors
    • Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. 2004. Least angle regression. Annals of Statistics, 32(2), 407-499. (with discussion, and a rejoinder by the authors).
    • (2004) Annals of Statistics , vol.32 , Issue.2 , pp. 407-499
    • Efron, B.1    Hastie, T.2    Johnstone, I.3    Tibshirani, R.4
  • 73
    • 0000756680 scopus 로고
    • The estimation from individual records of the relationship between dose and quantal response
    • Finney, D. J. 1947. The estimation from individual records of the relationship between dose and quantal response. Biometrika, 34(3/4), 320-334.
    • (1947) Biometrika , vol.34 , Issue.3-4 , pp. 320-334
    • Finney, D.J.1
  • 74
    • 0001165055 scopus 로고
    • Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
    • Fisher, R. A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507-521.
    • (1915) Biometrika , vol.10 , Issue.4 , pp. 507-521
    • Fisher, R.A.1
  • 75
    • 84939431353 scopus 로고
    • Theory of statistical estimation
    • Fisher, R. A. 1925. Theory of statistical estimation. Math. Proc. Cambridge Phil. Soc., 22(7), 700-725.
    • (1925) Math. Proc. Cambridge Phil. Soc. , vol.22 , Issue.7 , pp. 700-725
    • Fisher, R.A.1
  • 77
    • 0002631876 scopus 로고
    • The relation between the number of species and the number of individuals in a random sample of an animal population
    • Fisher, R. A., Corbet, A., and Williams, C. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol., 12, 42-58.
    • (1943) J. Anim. Ecol. , vol.12 , pp. 42-58
    • Fisher, R.A.1    Corbet, A.2    Williams, C.3
  • 80
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund, Y., and Schapire, R. 1997. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 81
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 83
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman, J., Hastie, T., and Tibshirani, R. 2000. Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics, 28, 337-307.
    • (2000) Annals of Statistics , vol.28 , pp. 307-337
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 85
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., and Tibshirani, R. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 86
    • 0015973904 scopus 로고
    • A predictive approach to the random effect model
    • Geisser, S. 1974. A predictive approach to the random effect model. Biometrika, 61, 101-107.
    • (1974) Biometrika , vol.61 , pp. 101-107
    • Geisser, S.1
  • 87
    • 84929149762 scopus 로고    scopus 로고
    • Sequential quasi Monte Carlo
    • with discussion
    • Gerber, M., and Chopin, N. 2015. Sequential quasi Monte Carlo. J. Roy. Statist. Soc. B, 77(3), 509-580. with discussion, doi: 10.1111/rssb.12104.
    • (2015) J. Roy. Statist. Soc. B , vol.77 , Issue.3 , pp. 509-580
    • Gerber, M.1    Chopin, N.2
  • 89
    • 0002348293 scopus 로고
    • The number of new species, and the increase in population coverage, when a sample is increased
    • Good, I., and Toulmin, G. 1956. The number of new species, and the increase in population coverage, when a sample is increased. Biometrika, 43, 45-63.
    • (1956) Biometrika , vol.43 , pp. 45-63
    • Good, I.1    Toulmin, G.2
  • 90
    • 0000120408 scopus 로고
    • Theoretical comparison of bootstrap confidence intervals
    • with discussion and a reply by the author
    • Hall, P. 1988. Theoretical comparison of bootstrap confidence intervals. Ann. Statist., 16(3), 927-985. with discussion and a reply by the author.
    • (1988) Ann. Statist. , vol.16 , Issue.3 , pp. 927-985
    • Hall, P.1
  • 91
    • 84950646761 scopus 로고
    • The influence curve and its role in robust estimation
    • Hampel, F. R. 1974. The influence curve and its role in robust estimation. J. Amer. Statist. Assoc., 69, 383-393.
    • (1974) J. Amer. Statist. Assoc. , vol.69 , pp. 383-393
    • Hampel, F.R.1
  • 93
    • 84927632777 scopus 로고    scopus 로고
    • Big data: A big mistake?
    • Harford, T. 2014. Big data: A big mistake? Significance, 11(5), 14-19.
    • (2014) Significance , vol.11 , Issue.5 , pp. 14-19
    • Harford, T.1
  • 94
    • 84972525897 scopus 로고
    • Local regression: Automatic kernel carpentry (with discussion)
    • Hastie, T., and Loader, C. 1993. Local regression: automatic kernel carpentry (with discussion). Statistical Science, 8, 120-143.
    • (1993) Statistical Science , vol.8 , pp. 120-143
    • Hastie, T.1    Loader, C.2
  • 96
    • 15944419638 scopus 로고    scopus 로고
    • Efficient quadratic regularization for expression arrays
    • Hastie, T., and Tibshirani, R. 2004. Efficient quadratic regularization for expression arrays. Biostatistics, 5(3), 329-340.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 329-340
    • Hastie, T.1    Tibshirani, R.2
  • 99
    • 0000069803 scopus 로고
    • The large-sample power of tests based on permutations of observations
    • Hoeffding, W. 1952. The large-sample power of tests based on permutations of observations. Ann. Math. Statist., 23, 169-192.
    • (1952) Ann. Math. Statist. , vol.23 , pp. 169-192
    • Hoeffding, W.1
  • 100
    • 0001613029 scopus 로고
    • Asymptotically optimal tests for multinomial distributions
    • Hoeffding, W. 1965. Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist., 36(2), 369-408.
    • (1965) Ann. Math. Statist. , vol.36 , Issue.2 , pp. 369-408
    • Hoeffding, W.1
  • 101
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., and Kennard, R. W. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 102
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber, P. J. 1964. Robust estimation of a location parameter. Ann. Math. Statist., 35, 73-101.
    • (1964) Ann. Math. Statist. , vol.35 , pp. 73-101
    • Huber, P.J.1
  • 103
    • 0001577150 scopus 로고
    • Estimating regression coefficients by minimizing the dispersion of the residuals
    • Jaeckel, L. A. 1972. Estimating regression coefficients by minimizing the dispersion of the residuals. Ann. Math. Statist., 43, 1449-1458.
    • (1972) Ann. Math. Statist. , vol.43 , pp. 1449-1458
    • Jaeckel, L.A.1
  • 105
    • 84941551093 scopus 로고    scopus 로고
    • Effective degrees of freedom: A flawed metaphor
    • Jansen, L., Fithian, W., and Hastie, T. 2015. Effective degrees of freedom: a flawed metaphor. Biometrika, 102(2), 479-485.
    • (2015) Biometrika , vol.102 , Issue.2 , pp. 479-485
    • Jansen, L.1    Fithian, W.2    Hastie, T.3
  • 106
    • 84919709419 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional regression
    • Javanmard, A., and Montanari, A. 2014. Confidence intervals and hypothesis testing for high-dimensional regression. J. of Machine Learning Res., 15, 2869-2909.
    • (2014) J. of Machine Learning Res. , vol.15 , pp. 2869-2909
    • Javanmard, A.1    Montanari, A.2
  • 113
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • Kaplan, E. L., and Meier, P. 1958. Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc., 53(282), 457-481.
    • (1958) J. Amer. Statist. Assoc. , vol.53 , Issue.282 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 115
    • 0030327756 scopus 로고    scopus 로고
    • The selection of prior distributions by formal rules
    • Kass, R. E., and Wasserman, L. 1996. The selection of prior distributions by formal rules. J. Amer. Statist. Assoc., 91(435), 1343-1370.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.435 , pp. 1343-1370
    • Kass, R.E.1    Wasserman, L.2
  • 118
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature, 521(7553), 436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 119
    • 84963614704 scopus 로고    scopus 로고
    • Exact post-selection inference, with application to the Lasso
    • Lee, J., Sun, D., Sun, Y., and Taylor, J. 2016. Exact post-selection inference, with application to the Lasso. Annals of Statistics, 44(3), 907-927.
    • (2016) Annals of Statistics , vol.44 , Issue.3 , pp. 907-927
    • Lee, J.1    Sun, D.2    Sun, Y.3    Taylor, J.4
  • 120
    • 0004029130 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons
    • Lehmann, E. L. 1983. Theory of Point Estimation. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons.
    • (1983) Theory of Point Estimation
    • Lehmann, E.L.1
  • 121
    • 25144516978 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative pretein classification
    • Leslie, C., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. 2003. Mismatch string kernels for discriminative pretein classification. Bioinformatics, 1, 1-10.
    • (2003) Bioinformatics , vol.1 , pp. 1-10
    • Leslie, C.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 122
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., and Wiener, M. 2002. Classification and regression by randomForest. R News, 2(3), 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 123
    • 85047428376 scopus 로고    scopus 로고
    • (April), Simons Foundation Frontiers of Data Science Lecture, April 1, 2015; video available
    • Liberman, M. 2015 (April). " Reproducible Research and the Common Task Method”. Simons Foundation Frontiers of Data Science Lecture, April 1, 2015; video available.
    • (2015) Reproducible Research and the Common Task Method
    • Liberman, M.1
  • 124
    • 84901725294 scopus 로고    scopus 로고
    • A significance test for the lasso
    • With discussion and a rejoinder by the authors
    • Lockhart, R., Taylor, J., Tibshirani, R., and Tibshirani, R. 2014. A significance test for the lasso. Annals of Statistics, 42(2), 413-468. With discussion and a rejoinder by the authors.
    • (2014) Annals of Statistics , vol.42 , Issue.2 , pp. 413-468
    • Lockhart, R.1    Taylor, J.2    Tibshirani, R.3    Tibshirani, R.4
  • 125
    • 0002779015 scopus 로고
    • A method for allowing for known observational selection in small samples applied to 3CR quasars
    • Lynden-Bell, D. 1971. A method for allowing for known observational selection in small samples applied to 3CR quasars. Mon. Not. Roy. Astron. Soc., 155(1), 95-18.
    • (1971) Mon. Not. Roy. Astron. Soc. , vol.155 , Issue.1 , pp. 95-118
    • Lynden-Bell, D.1
  • 126
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows, C. L. 1973. Some comments on Cp. Technometrics, 15(4), 661-675.
    • (1973) Technometrics , vol.15 , Issue.4 , pp. 661-675
    • Mallows, C.L.1
  • 127
    • 84959801619 scopus 로고
    • Statistical aspects of the analysis of data from retrospective studies of disease
    • Mantel, N., and Haenszel, W. 1959. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst., 22(4), 719-748.
    • (1959) J. Natl. Cancer Inst. , vol.22 , Issue.4 , pp. 719-748
    • Mantel, N.1    Haenszel, W.2
  • 129
    • 0003663926 scopus 로고
    • Monographs on Statistics and Applied Probability. Chapman & Hall
    • McCullagh, P., and Nelder, J. 1983. Generalized Linear Models. Monographs on Statistics and Applied Probability. Chapman & Hall.
    • (1983) Generalized Linear Models
    • McCullagh, P.1    Nelder, J.2
  • 130
    • 0003663926 scopus 로고
    • Second edn. Monographs on Statistics and Applied Probability. Chapman & Hall
    • McCullagh, P., and Nelder, J. 1989. Generalized Linear Models. Second edn. Monographs on Statistics and Applied Probability. Chapman & Hall.
    • (1989) Generalized Linear Models
    • McCullagh, P.1    Nelder, J.2
  • 132
    • 0001206986 scopus 로고
    • A trustworthy jackknife
    • Miller, Jr, R. G. 1964. A trustworthy jackknife. Ann. Math. Statist, 35, 1594-1605.
    • (1964) Ann. Math. Statist , vol.35 , pp. 1594-1605
    • Miller, R.G.1
  • 133
    • 0004146487 scopus 로고
    • Second edn. Springer Series in Statistics. New York: Springer-Verlag
    • Miller, Jr, R. G. 1981. Simultaneous Statistical Inference. Second edn. Springer Series in Statistics. New York: Springer-Verlag.
    • (1981) Simultaneous Statistical Inference
    • Miller, R.G.1
  • 134
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Nesterov, Y. 2013. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1), 125-161.
    • (2013) Mathematical Programming , vol.140 , Issue.1 , pp. 125-161
    • Nesterov, Y.1
  • 135
    • 0000679487 scopus 로고
    • Outline of a theory of statistical estimation based on the classical theory of probability
    • Neyman, J. 1937. Outline of a theory of statistical estimation based on the classical theory of probability. Phil. Trans. Roy. Soc., 236(767), 333-380.
    • (1937) Phil. Trans. Roy. Soc. , vol.236 , Issue.767 , pp. 333-380
    • Neyman, J.1
  • 136
    • 0003080977 scopus 로고
    • Frequentist probability and frequentist statistics
    • Neyman, J. 1977. Frequentist probability and frequentist statistics. Synthese, 36(1), 97-131.
    • (1977) Synthese , vol.36 , Issue.1 , pp. 97-131
    • Neyman, J.1
  • 137
    • 0000776754 scopus 로고
    • On the problem of the most efficient tests of statistical hypotheses
    • Neyman, J., and Pearson, E. S. 1933. On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. Roy. Soc. A, 231(694-706), 289-337.
    • (1933) Phil. Trans. Roy. Soc. A , vol.231 , Issue.694-706 , pp. 289-337
    • Neyman, J.1    Pearson, E.S.2
  • 138
    • 61849123008 scopus 로고    scopus 로고
    • Lecture notes
    • Ng, A. 2015. Neural Networks. http://deeplearning.stanford.edu/wiki/index.php/Neural_Networks. Lecture notes.
    • (2015) Neural Networks
    • Ng, A.1
  • 139
    • 85161972005 scopus 로고    scopus 로고
    • Tiled convolutional neural networks
    • Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds), Curran Associates, Inc
    • Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng, A. 2010. Tiled convolutional neural networks. Pages 1279-1287 of: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds), Advances in Neural Information Processing Systems 23. Curran Associates, Inc.
    • (2010) Advances in Neural Information Processing Systems 23 , pp. 1279-1287
    • Ngiam, J.1    Chen, Z.2    Chia, D.3    Koh, P.W.4    Le, Q.V.5    Ng, A.6
  • 140
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison
    • With discussion and a reply by the author
    • O’Hagan, A. 1995. Fractional Bayes factors for model comparison. J. Roy. Statist. Soc. Ser. B, 57(1), 99-138. With discussion and a reply by the author.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , Issue.1 , pp. 99-138
    • O’Hagan, A.1
  • 141
  • 142
    • 0001454867 scopus 로고
    • On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
    • Pearson, K. 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Phil. Mag., 50(302), 157-175.
    • (1900) Phil. Mag. , vol.50 , Issue.302 , pp. 157-175
    • Pearson, K.1
  • 143
    • 0034118493 scopus 로고    scopus 로고
    • Inference of Population Structure using Multilocus Genotype Data
    • June
    • Pritchard, J., Stephens, M., and Donnelly, P. 2000. Inference of Population Structure using Multilocus Genotype Data. Genetics, 155(June), 945-959.
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.1    Stephens, M.2    Donnelly, P.3
  • 144
    • 0001610304 scopus 로고
    • Notes on bias in estimation
    • Quenouille, M. H. 1956. Notes on bias in estimation. Biometrika, 43, 353-360.
    • (1956) Biometrika , vol.43 , pp. 353-360
    • Quenouille, M.H.1
  • 147
    • 66549105133 scopus 로고    scopus 로고
    • Doubly robust internal benchmarking and false discovery rates for detecting racial bias in police stops
    • Ridgeway, G., and MacDonald, J. M. 2009. Doubly robust internal benchmarking and false discovery rates for detecting racial bias in police stops. J. Amer. Statist. Assoc., 104(486), 661-668.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , Issue.486 , pp. 661-668
    • Ridgeway, G.1    MacDonald, J.M.2
  • 151
    • 0000135972 scopus 로고
    • The Bayesian bootstrap
    • Rubin, D. B. 1981. The Bayesian bootstrap. Ann. Statist., 9(1), 130-134.
    • (1981) Ann. Statist. , vol.9 , Issue.1 , pp. 130-134
    • Rubin, D.B.1
  • 153
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. 1990. The strength of weak learnability. Machine Learning, 5(2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 155
    • 56149101430 scopus 로고
    • A method for judging all contrasts in the analysis of variance
    • Scheffé, H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika, 40(1-2), 87-110.
    • (1953) Biometrika , vol.40 , Issue.1-2 , pp. 87-110
    • Scheffé, H.1
  • 157
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Ann. Statist., 6(2), 461-464.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 158
    • 49649090901 scopus 로고    scopus 로고
    • A note concerning a selection " paradox” of Dawid’s
    • Senn, S. 2008. A note concerning a selection " paradox” of Dawid’s. Amer. Statist., 62(3), 206-210.
    • (2008) Amer. Statist. , vol.62 , Issue.3 , pp. 206-210
    • Senn, S.1
  • 159
    • 0000453490 scopus 로고
    • Statistical " discoveries” and effect-size estimation
    • Soric, B. 1989. Statistical " discoveries” and effect-size estimation. J. Amer. Statist. Assoc., 84(406), 608-610.
    • (1989) J. Amer. Statist. Assoc. , vol.84 , Issue.406 , pp. 608-610
    • Soric, B.1
  • 162
    • 84972949113 scopus 로고
    • Deconvoluting kernel density estimators
    • Stefanski, L., and Carroll, R. J. 1990. Deconvoluting kernel density estimators. Statistics, 21(2), 169-184.
    • (1990) Statistics , vol.21 , Issue.2 , pp. 169-184
    • Stefanski, L.1    Carroll, R.J.2
  • 164
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Stein, C. 1981. Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9(6), 1135-1151.
    • (1981) Ann. Statist. , vol.9 , Issue.6 , pp. 1135-1151
    • Stein, C.1
  • 165
    • 0001121085 scopus 로고
    • On the coverage probability of confidence sets based on a prior distribution
    • Banach Center Publication, PWN, Warsaw
    • Stein, C. 1985. On the coverage probability of confidence sets based on a prior distribution. Pages 485-514 of: Sequential Methods in Statistics. Banach Center Publication, vol.16. PWN, Warsaw.
    • (1985) Sequential Methods in Statistics , vol.16 , pp. 485-514
    • Stein, C.1
  • 166
    • 82055191743 scopus 로고    scopus 로고
    • How Ronald Fisher became a mathematical statistician
    • Stigler, S. M. 2006. How Ronald Fisher became a mathematical statistician. Math. Sci. Hum. Math. Soc. Sci., 176(176), 23-30.
    • (2006) Math. Sci. Hum. Math. Soc. Sci. , vol.176 , Issue.176 , pp. 23-30
    • Stigler, S.M.1
  • 167
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • With discussion and a reply by the author
    • Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B, 36, 111-147. With discussion and a reply by the author.
    • (1974) J. Roy. Statist. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 168
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach
    • Storey, J. D., Taylor, J., and Siegmund, D. 2004. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. Roy. Statist. Soc. B, 66(1), 187-205.
    • (2004) J. Roy. Statist. Soc. B , vol.66 , Issue.1 , pp. 187-205
    • Storey, J.D.1    Taylor, J.2    Siegmund, D.3
  • 169
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • With discussion and a reply by the authors
    • Tanner, M. A., and Wong, W. H. 1987. The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc., 82(398), 528-550. With discussion and a reply by the authors.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , Issue.398 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 170
    • 84963653983 scopus 로고    scopus 로고
    • Tests in adaptive regression via the Kac-Rice formula
    • Taylor, J., Loftus, J., and Tibshirani, R. 2015. Tests in adaptive regression via the Kac-Rice formula. Annals of Statistics, 44(2), 743-770.
    • (2015) Annals of Statistics , vol.44 , Issue.2 , pp. 743-770
    • Taylor, J.1    Loftus, J.2    Tibshirani, R.3
  • 171
    • 0005647839 scopus 로고
    • Did Shakespeare write a newly-discovered poem?
    • Thisted, R., and Efron, B. 1987. Did Shakespeare write a newly-discovered poem? Biometrika, 74(3), 445-455.
    • (1987) Biometrika , vol.74 , Issue.3 , pp. 445-455
    • Thisted, R.1    Efron, B.2
  • 172
    • 0001638080 scopus 로고
    • Noninformative priors for one parameter of many
    • Tibshirani, R. 1989. Noninformative priors for one parameter of many. Biometrika, 76(3), 604-608.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 604-608
    • Tibshirani, R.1
  • 173
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. B, 58(1), 267-288.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 177
    • 0001617782 scopus 로고
    • " Bias and confidence in not-quite large samples” in Abstracts of Papers
    • Tukey, J. W. 1958. " Bias and confidence in not-quite large samples” in Abstracts of Papers. Ann. Math. Statist., 29(2), 614.
    • (1958) Ann. Math. Statist. , vol.29 , Issue.2 , pp. 614
    • Tukey, J.W.1
  • 179
    • 0002331280 scopus 로고
    • The future of data analysis
    • Tukey, J. W. 1962. The future of data analysis. Ann. Math. Statist., 33, 1-67.
    • (1962) Ann. Math. Statist. , vol.33 , pp. 1-67
    • Tukey, J.W.1
  • 180
  • 181
    • 84988001472 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R. 2014. On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics, 42(3), 1166-1202.
    • (2014) Annals of Statistics , vol.42 , Issue.3 , pp. 1166-1202
    • van de Geer, S.1    Bühlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 183
    • 84896538964 scopus 로고    scopus 로고
    • Dropout training as adaptive regularization
    • Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. (eds), Curran Associates, Inc
    • Wager, S., Wang, S., and Liang, P. S. 2013. Dropout training as adaptive regularization. Pages 351-359 of: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. (eds), Advances in Neural Information Processing Systems 26. Curran Associates, Inc.
    • (2013) Advances in Neural Information Processing Systems 26 , pp. 351-359
    • Wager, S.1    Wang, S.2    Liang, P.S.3
  • 184
    • 84902788102 scopus 로고    scopus 로고
    • Confidence intervals for random forests: The jacknife and the infintesimal jacknife
    • Wager, S., Hastie, T., and Efron, B. 2014. Confidence intervals for random forests: the jacknife and the infintesimal jacknife. J. of Machine Learning Res., 15, 1625-1651.
    • (2014) J. of Machine Learning Res. , vol.15 , pp. 1625-1651
    • Wager, S.1    Hastie, T.2    Efron, B.3
  • 186
    • 0003267918 scopus 로고    scopus 로고
    • GACV for support vector machines
    • Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D. (eds), MIT Press
    • Wahba, G., Lin, Y., and Zhang, H. 2000. GACV for support vector machines. Pages 297-311 of: Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D. (eds), Advances in Large Margin Classifiers. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 297-311
    • Wahba, G.1    Lin, Y.2    Zhang, H.3
  • 188
    • 85041973595 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • Wedderburn, R. W. M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61(3), 439-447.
    • (1974) Biometrika , vol.61 , Issue.3 , pp. 439-447
    • Wedderburn, R.W.M.1
  • 189
    • 0001159310 scopus 로고
    • On formulae for confidence points based on integrals of weighted likelihoods
    • Welch, B. L., and Peers, H. W. 1963. On formulae for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. B, 25, 318-329.
    • (1963) J. Roy. Statist. Soc. B , vol.25 , pp. 318-329
    • Welch, B.L.1    Peers, H.W.2
  • 191
    • 84875683306 scopus 로고    scopus 로고
    • Confidence distribution, the frequentist distribution estimator of a parameter: A review
    • with discussion
    • Xie, M., and Singh, K. 2013. Confidence distribution, the frequentist distribution estimator of a parameter: A review. Int. Statist. Rev., 81(1), 3-39. with discussion.
    • (2013) Int. Statist. Rev. , vol.81 , Issue.1 , pp. 3-39
    • Xie, M.1    Singh, K.2
  • 192
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • Ye, J. 1998. On measuring and correcting the effects of data mining and model selection. J. Amer. Statist. Assoc., 93(441), 120-131.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , Issue.441 , pp. 120-131
    • Ye, J.1
  • 193
    • 84891835103 scopus 로고    scopus 로고
    • Confidence intervals for low-dimensional parameters with high-dimensional data
    • Zhang, C.-H., and Zhang, S. 2014. Confidence intervals for low-dimensional parameters with high-dimensional data. J. Roy. Statist. Soc. B, 76(1), 217-242.
    • (2014) J. Roy. Statist. Soc. B , vol.76 , Issue.1 , pp. 217-242
    • Zhang, C.-H.1    Zhang, S.2
  • 194
    • 34548536008 scopus 로고    scopus 로고
    • On the " degrees of freedom” of the lasso
    • Zou, H., Hastie, T., and Tibshirani, R. 2007. On the " degrees of freedom” of the lasso. Ann. Statist., 35(5), 2173-2192.
    • (2007) Ann. Statist. , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.