메뉴 건너뛰기




Volumn 42, Issue 2, 2014, Pages 413-468

A significance test for the lasso

Author keywords

Lasso; Least angle regression; P value; Significance test

Indexed keywords


EID: 84901725294     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-AOS1175     Document Type: Review
Times cited : (532)

References (43)
  • 1
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • MR2486527
    • BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 183-202. MR2486527
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 2
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • MR2765668
    • BECKER, S., BOBIN, J. and CANDÈS, E. J. (2011). NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4 1-39. MR2765668
    • (2011) SIAM J. Imaging Sci. , vol.4 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.J.3
  • 3
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • MR2833262
    • BECKER, S. R., CANDÈS, E. J. and GRANT, M. C. (2011). Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3 165-218. MR2833262
    • (2011) Math. Program. Comput. , vol.3 , pp. 165-218
    • Becker, S.R.1    Candès, E.J.2    Grant, M.C.3
  • 4
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternative direction method of multipliers
    • BOYD, S., PARIKH, N., CHU, E., PELEATO, B. and ECKSTEIN, J. (2011). Distributed optimization and statistical learning via the alternative direction method of multipliers. Faund. Trends Mach. Learn. 3 1-122.
    • (2011) Faund. Trends Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 5
    • 84885049881 scopus 로고    scopus 로고
    • Statistical significance in high-dimensional linear models
    • MR3102549
    • BÜHLMANN, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli 19 1212-1242. MR3102549
    • (2013) Bernoulli , vol.19 , pp. 1212-1242
    • Bühlmann, P.1
  • 6
    • 69049120308 scopus 로고    scopus 로고
    • Near-ideal model selection by ℓ1 minimization
    • MR2543688
    • CANDÈS, E. J. and PLAN, Y. (2009). Near-ideal model selection by ℓ1 minimization. Ann. Statist. 37 2145-2177. MR2543688
    • (2009) Ann. Statist. , vol.37 , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 7
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • MR2300700
    • CANDES, E. J. and TAO, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory 52 5406-5425. MR2300700
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 10
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • MR2241189
    • DONOHO, D. L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52 1289-1306. MR2241189
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 11
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • MR0845884
    • EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81 461-470. MR0845884
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 13
    • 84855983910 scopus 로고    scopus 로고
    • Variance estimation using refitted cross-validation in ultrahigh-dimensional regression
    • MR2885839
    • FAN, J., GUO, S. and HAO, N. (2012). Variance estimation using refitted cross-validation in ultrahigh-dimensional regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 37-65. MR2885839
    • (2012) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.74 , pp. 37-65
    • Fan, J.1    Guo, S.2    Hao, N.3
  • 14
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
    • (2010) J. Stat. Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 26844461512 scopus 로고    scopus 로고
    • Recovery of exact sparse representations in the presence of bounded noise
    • MR2237526
    • FUCHS, J. J. (2005). Recovery of exact sparse representations in the presence of bounded noise. IEEE Trans. Inform. Theory 51 3601-3608. MR2237526
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 3601-3608
    • Fuchs, J.J.1
  • 19
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • MR2108039
    • GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 25
    • 84855997958 scopus 로고    scopus 로고
    • A perturbation method for inference on regularized regression estimates
    • MR2896842
    • MINNIER, J., TIAN, L. and CAI, T. (2011). A perturbation method for inference on regularized regression estimates. J. Amer. Statist. Assoc. 106 1371-1382. MR2896842
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 1371-1382
    • Minnier, J.1    Tian, L.2    Cai, T.3
  • 26
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • MR1773265
    • OSBORNE, M. R., PRESNELL, B. and TURLACH, B. A. (2000a). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 28
    • 34547849507 scopus 로고    scopus 로고
    • L1-regularization path algorithm for generalized linear models
    • MR2370074
    • PARK, M. Y. and HASTIE, T. (2007). L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 659-677. MR2370074
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 29
    • 0037250521 scopus 로고    scopus 로고
    • Human immunodeficiency virus reverse transcriptase and protease sequence database
    • DOI 10.1093/nar/gkg100
    • RHEE, S.-Y., GONZALES, M. J., KANTOR, R., BETTS, B. J., RAVELA, J. and SHAFER, R. W. (2003). Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 31 298-303. (Pubitemid 36150389)
    • (2003) Nucleic Acids Research , vol.31 , Issue.1 , pp. 298-303
    • Rhee, S.-Y.1    Gonzales, M.J.2    Kantor, R.3    Betts, B.J.4    Ravela, J.5    Shafer, R.W.6
  • 30
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • MR2999166
    • SUN, T. and ZHANG, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879-898. MR2999166
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 32
    • 23244455084 scopus 로고    scopus 로고
    • Validity of the expected Euler characteristic heuristic
    • MR2150192
    • TAYLOR, J., TAKEMURA, A. andADLER, R. J. (2005). Validity of the expected Euler characteristic heuristic. Ann. Probab. 33 1362-1396. MR2150192
    • (2005) Ann. Probab. , vol.33 , pp. 1362-1396
    • Taylor, J.1    Takemura, A.2    Adler, R.J.3
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 84884951589 scopus 로고    scopus 로고
    • The lasso problem and uniqueness
    • MR3066375
    • TIBSHIRANI, RYAN J. (2013). The lasso problem and uniqueness. Electron. J. Stat. 7 1456-1490. MR3066375
    • (2013) Electron. J. Stat. , vol.7 , pp. 1456-1490
    • Tibshirani Ryan, J.1
  • 35
    • 84872012577 scopus 로고    scopus 로고
    • Degrees of freedom in lasso problems
    • MR2985948
    • TIBSHIRANI, R. J. and TAYLOR, J. (2012). Degrees of freedom in lasso problems. Ann. Statist. 40 1198-1232. MR2985948
    • (2012) Ann. Statist. , vol.40 , pp. 1198-1232
    • Tibshirani, R.J.1    Taylor, J.2
  • 37
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso)
    • MR2729873
    • WAINWRIGHT, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202. MR2729873
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 38
    • 69049091975 scopus 로고    scopus 로고
    • High-dimensional variable selection
    • MR2543689
    • WASSERMAN, L. and ROEDER, K. (2009). High-dimensional variable selection. Ann. Statist. 37 2178-2201. MR2543689
    • (2009) Ann. Statist. , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 39
    • 84936167519 scopus 로고
    • Estimation of parameters and large quantiles based on the k largest observations
    • MR0521329
    • WEISSMAN, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc. 73 812-815. MR0521329
    • (1978) J. Amer. Statist. Assoc. , vol.73 , pp. 812-815
    • Weissman, I.1
  • 40
    • 84891835103 scopus 로고    scopus 로고
    • Confidence intervals for low dimensional parameters in high dimensional linear models
    • MR3153940
    • ZHANG, C.-H. and ZHANG, S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 76 217-242. MR3153940
    • (2014) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.76 , pp. 217-242
    • Zhang, C.-H.1    Zhang, S.2
  • 41
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 42
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • MR2137327
    • ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320. MR2137327
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 43
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • MR2363967
    • ZOU, H., HASTIE, T. and TIBSHIRANI, R. (2007). On the "degrees of freedom" of the lasso. Ann. Statist. 35 2173-2192. MR2363967
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.