메뉴 건너뛰기




Volumn 74, Issue 2, 2012, Pages 245-266

Strong rules for discarding predictors in lasso-type problems

Author keywords

Convex optimization; l 1 regularization; Lasso; Screening; Sparsity

Indexed keywords


EID: 84858280765     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2011.01004.x     Document Type: Article
Times cited : (558)

References (20)
  • 4
    • 84858283504 scopus 로고    scopus 로고
    • Safe feature elimination in sparse supervised learning. Technical Report UC/EECS-2010-126. Electrical Engineering and Computer Sciences Department, University of California at Berkeley, Berkeley.
    • El Ghaoui, L., Viallon, V. and Rabbani, T. (2010) Safe feature elimination in sparse supervised learning. Technical Report UC/EECS-2010-126. Electrical Engineering and Computer Sciences Department, University of California at Berkeley, Berkeley.
    • (2010)
    • El Ghaoui, L.1    Viallon, V.2    Rabbani, T.3
  • 6
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849-911.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 8
    • 26844461512 scopus 로고    scopus 로고
    • Recovery of exact sparse representations in the presense of noise
    • Fuchs, J. (2005) Recovery of exact sparse representations in the presense of noise. IEEE Trans. Inform. Theor., 51, 3601-3608.
    • (2005) IEEE Trans. Inform. Theor. , vol.51 , pp. 3601-3608
    • Fuchs, J.1
  • 9
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for large-scale l1-regularized logistic regression
    • Koh, K., Kim, S.-J. and Boyd, S. (2007) An interior-point method for large-scale l1-regularized logistic regression. J. Mach. Learn. Res., 8, 1519-1555.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1519-1555
    • Koh, K.1    Kim, S.-J.2    Boyd, S.3
  • 10
    • 85142688646 scopus 로고
    • Newsweeder: learning to filter netnews
    • (Available from)
    • Lang, K. (1995) Newsweeder: learning to filter netnews. In Proc. 21st Int. Conf. Machine Learning, pp. 331-339. (Available from).
    • (1995) Proc. 21st Int. Conf. Machine Learning , pp. 331-339
    • Lang, K.1
  • 11
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Buhlmann, P. (2006) High-dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 12
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 79954994522 scopus 로고    scopus 로고
    • The solution path of the generalized lasso
    • Tibshirani, R. and Taylor, J. (2011) The solution path of the generalized lasso. Ann. Statist., 39, 1335-1371.
    • (2011) Ann. Statist. , vol.39 , pp. 1335-1371
    • Tibshirani, R.1    Taylor, J.2
  • 14
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: convex programming methods for identifying sparse signals in noise
    • Tropp, J. (2006) Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theor., 3, 1030-1051.
    • (2006) IEEE Trans. Inform. Theor. , vol.3 , pp. 1030-1051
    • Tropp, J.1
  • 15
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (lasso)
    • Wainwright, M. J. (2009) Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (lasso). IEEE Trans. Inform. Theor., 55, 2183-2202.
    • (2009) IEEE Trans. Inform. Theor. , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 16
    • 84858283500 scopus 로고    scopus 로고
    • A fast screening rule for the graphical lasso
    • to be published.
    • Witten, D. and Friedman, J. (2011) A fast screening rule for the graphical lasso. J. Computnl Graph. Statist., to be published.
    • (2011) J. Computnl Graph. Statist.
    • Witten, D.1    Friedman, J.2
  • 17
    • 62549115747 scopus 로고    scopus 로고
    • Genomewide association analysis by lasso penalized logistic regression
    • Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. and Lange, K. (2009) Genomewide association analysis by lasso penalized logistic regression. Bioinformatics, 25, 714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.1    Chen, Y.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 18
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49-67.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 19
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of the lasso
    • Zhao, P. and Yu, B. (2006) On model selection consistency of the lasso. J. Mach. Learn. Res., 7, 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 20
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.