메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 2869-2909

Confidence intervals and hypothesis testing for high-dimensional regression

Author keywords

Bias of an estimator; Confidence intervals; High dimensional models; Hypothesis testing; LASSO

Indexed keywords

ALGORITHMS; PROBABILITY DISTRIBUTIONS; STATISTICAL TESTS; THROUGHPUT; UNCERTAINTY ANALYSIS;

EID: 84919709419     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (822)

References (50)
  • 2
    • 84881601254 scopus 로고    scopus 로고
    • Least squares after model selection in high-dimensional sparse models
    • A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse models. Bernoulli, 19(2):521-547, 2013.
    • (2013) Bernoulli , vol.19 , Issue.2 , pp. 521-547
    • Belloni, A.1    Chernozhukov, V.2
  • 4
    • 84986904269 scopus 로고    scopus 로고
    • Inference on treatment effects after selection amongst high-dimensional controls
    • arXiv Preprint arXiv:1201.0224
    • A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection amongst high-dimensional controls. arXiv Preprint arXiv:1201.0224, The Review of Economic Studies, 2014.
    • (2014) The Review of Economic Studies
    • Belloni, A.1    Chernozhukov, V.2    Hansen, C.3
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 37:1705-1732, 2009.
    • (2009) The Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 6
    • 84885049881 scopus 로고    scopus 로고
    • Statistical significance in high-dimensional linear models
    • P. Bühlmann. Statistical significance in high-dimensional linear models. Bernoulli, 19(4): 1212-1242, 2013.
    • (2013) Bernoulli , vol.19 , Issue.4 , pp. 1212-1242
    • Bühlmann, P.1
  • 9
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 35:2313-2351, 2007.
    • (2007) The Annals of Statistics , vol.35 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 13
  • 15
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7):2845-2862, 2001.
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.7 , pp. 2845-2862
    • Donoho, D.L.1    Huo, X.2
  • 17
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 19
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: Beyond the linear model
    • J. Fan, R. Samworth, and Y. Wu. Ultrahigh dimensional feature selection: beyond the linear model. The Journal of Machine Learning Research, 10:2013-2038, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 21
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL http://www.jstatsoft.org/v33/i01/.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional predictor selection and the virtue of over-parametrization
    • E. Greenshtein and Y. Ritov. Persistence in high-dimensional predictor selection and the virtue of over-parametrization. Bernoulli, 10:971-988, 2004.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 23
    • 84898933064 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional statistical models
    • A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional statistical models. In Advances in Neural Information Processing Systems, pages 1187-1195, 2013a.
    • (2013) Advances in Neural Information Processing Systems , pp. 1187-1195
    • Javanmard, A.1    Montanari, A.2
  • 24
    • 84891904619 scopus 로고    scopus 로고
    • Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory
    • arXiv Preprint arXiv:1301.4240, To appear in
    • A. Javanmard and A. Montanari. Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory. arXiv Preprint arXiv:1301.4240, (To appear in IEEE Transactions on Information Theory ), 2013b.
    • (2013) IEEE Transactions on Information Theory
    • Javanmard, A.1    Montanari, A.2
  • 25
    • 84897714553 scopus 로고    scopus 로고
    • Nearly optimal sample size in hypothesis testing for high-dimensional regression
    • Monticello, IL, June
    • A. Javanmard and A. Montanari. Nearly optimal sample size in hypothesis testing for high-dimensional regression. In 51st Annual Allerton Conference, pages 1427-1434, Monticello, IL, June 2013c.
    • (2013) 51st Annual Allerton Conference , pp. 1427-1434
    • Javanmard, A.1    Montanari, A.2
  • 26
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • August
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, August 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 30
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415, 1993.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 31
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34:1436-1462, 2006.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 35
    • 78651272402 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • J. Peng, J. Zhu, A. Bergamaschi, W. Han, D.-Y. Noh, J. R. Pollack, and P. Wang. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. The Annals of Applied Statistics, 4(1):53-77, 2010.
    • (2010) The Annals of Applied Statistics , vol.4 , Issue.1 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3    Han, W.4    Noh, D.-Y.5    Pollack, J.R.6    Wang, P.7
  • 38
    • 84877881209 scopus 로고    scopus 로고
    • Reconstruction from anisotropic random measurements
    • M. Rudelson and Z. Shuheng. Reconstruction from anisotropic random measurements. IEEE Transactions on Information Theory, 59(6):3434-3447, 2013.
    • (2013) IEEE Transactions on Information Theory , vol.59 , Issue.6 , pp. 3434-3447
    • Rudelson, M.1    Shuheng, Z.2
  • 39
    • 77955057877 scopus 로고    scopus 로고
    • 1-penalization for mixture regression models (with discussion)
    • 1-penalization for mixture regression models (with discussion). Test, 19(2):209-256, 2010.
    • (2010) Test , vol.19 , Issue.2 , pp. 209-256
    • Städler, N.1    Bühlmann, P.2    Van De Geer, S.3
  • 40
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):879-898, 2012.
    • (2012) Biometrika , vol.99 , Issue.4 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 41
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection with the Lasso
    • R. Tibshirani. Regression shrinkage and selection with the Lasso. J. Royal. Statist. Soc B, 58:267-288, 1996.
    • (1996) J. Royal. Statist. Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 42
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electron. J. Statist., 3:1360-1392, 2009.
    • (2009) Electron. J. Statist. , vol.3 , pp. 1360-1392
    • Van De Geer, S.1    Bühlmann, P.2
  • 43
    • 84988001472 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • arXiv Preprint arXiv:1303.0518, To appear in
    • S. van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence regions and tests for high-dimensional models. arXiv Preprint arXiv:1303.0518, (To appear in Annals of Statistics ), 2014.
    • (2014) Annals of Statistics
    • Van De Geer, S.1    Bühlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 45
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • Y.C. Eldar and G. Kutyniok, editors, Cambridge University Press
    • R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y.C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages 210-268. Cambridge University Press, 2012.
    • (2012) Compressed Sensing: Theory and Applications , pp. 210-268
    • Vershynin, R.1
  • 48
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2):894-942, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.