-
2
-
-
84881601254
-
Least squares after model selection in high-dimensional sparse models
-
A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse models. Bernoulli, 19(2):521-547, 2013.
-
(2013)
Bernoulli
, vol.19
, Issue.2
, pp. 521-547
-
-
Belloni, A.1
Chernozhukov, V.2
-
4
-
-
84986904269
-
Inference on treatment effects after selection amongst high-dimensional controls
-
arXiv Preprint arXiv:1201.0224
-
A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection amongst high-dimensional controls. arXiv Preprint arXiv:1201.0224, The Review of Economic Studies, 2014.
-
(2014)
The Review of Economic Studies
-
-
Belloni, A.1
Chernozhukov, V.2
Hansen, C.3
-
6
-
-
84885049881
-
Statistical significance in high-dimensional linear models
-
P. Bühlmann. Statistical significance in high-dimensional linear models. Bernoulli, 19(4): 1212-1242, 2013.
-
(2013)
Bernoulli
, vol.19
, Issue.4
, pp. 1212-1242
-
-
Bühlmann, P.1
-
8
-
-
84895791592
-
High-dimensional statistics with a view toward applications in biology
-
P. Bühlmann, M. Kalisch, and L. Meier. High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 1(1):255-278, 2014.
-
(2014)
Annual Review of Statistics and Its Application
, vol.1
, Issue.1
, pp. 255-278
-
-
Bühlmann, P.1
Kalisch, M.2
Meier, L.3
-
9
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 35:2313-2351, 2007.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 2313-2351
-
-
Candès, E.1
Tao, T.2
-
15
-
-
0035504028
-
Uncertainty principles and ideal atomic decomposition
-
D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7):2845-2862, 2001.
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.7
, pp. 2845-2862
-
-
Donoho, D.L.1
Huo, X.2
-
17
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
19
-
-
70449440300
-
Ultrahigh dimensional feature selection: Beyond the linear model
-
J. Fan, R. Samworth, and Y. Wu. Ultrahigh dimensional feature selection: beyond the linear model. The Journal of Machine Learning Research, 10:2013-2038, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 2013-2038
-
-
Fan, J.1
Samworth, R.2
Wu, Y.3
-
20
-
-
84855983910
-
Variance estimation using refitted cross-validation in ultrahigh dimensional regression
-
J. Fan, S. Guo, and N. Hao. Variance estimation using refitted cross-validation in ultrahigh dimensional regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(1):37-65, 2012.
-
(2012)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.74
, Issue.1
, pp. 37-65
-
-
Fan, J.1
Guo, S.2
Hao, N.3
-
21
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL http://www.jstatsoft.org/v33/i01/.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
31344454903
-
Persistence in high-dimensional predictor selection and the virtue of over-parametrization
-
E. Greenshtein and Y. Ritov. Persistence in high-dimensional predictor selection and the virtue of over-parametrization. Bernoulli, 10:971-988, 2004.
-
(2004)
Bernoulli
, vol.10
, pp. 971-988
-
-
Greenshtein, E.1
Ritov, Y.2
-
23
-
-
84898933064
-
Confidence intervals and hypothesis testing for high-dimensional statistical models
-
A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional statistical models. In Advances in Neural Information Processing Systems, pages 1187-1195, 2013a.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1187-1195
-
-
Javanmard, A.1
Montanari, A.2
-
24
-
-
84891904619
-
Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory
-
arXiv Preprint arXiv:1301.4240, To appear in
-
A. Javanmard and A. Montanari. Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory. arXiv Preprint arXiv:1301.4240, (To appear in IEEE Transactions on Information Theory ), 2013b.
-
(2013)
IEEE Transactions on Information Theory
-
-
Javanmard, A.1
Montanari, A.2
-
25
-
-
84897714553
-
Nearly optimal sample size in hypothesis testing for high-dimensional regression
-
Monticello, IL, June
-
A. Javanmard and A. Montanari. Nearly optimal sample size in hypothesis testing for high-dimensional regression. In 51st Annual Allerton Conference, pages 1427-1434, Monticello, IL, June 2013c.
-
(2013)
51st Annual Allerton Conference
, pp. 1427-1434
-
-
Javanmard, A.1
Montanari, A.2
-
26
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
August
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, August 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
28
-
-
84901725294
-
A significance test for the Lasso
-
R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani. A significance test for the Lasso. Annals of Statistics, 42(2):413-468, 2014.
-
(2014)
Annals of Statistics
, vol.42
, Issue.2
, pp. 413-468
-
-
Lockhart, R.1
Taylor, J.2
Tibshirani, R.J.3
Tibshirani, R.4
-
29
-
-
85032751466
-
Compressed sensing MRI
-
M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing MRI. IEEE Signal Processing Magazine, 25:72-82, 2008.
-
(2008)
IEEE Signal Processing Magazine
, vol.25
, pp. 72-82
-
-
Lustig, M.1
Donoho, D.L.2
Santos, J.M.3
Pauly, J.M.4
-
30
-
-
0027842081
-
Matching pursuits with time-frequency dictionaries
-
S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415, 1993.
-
(1993)
IEEE Transactions on Signal Processing
, vol.41
, Issue.12
, pp. 3397-3415
-
-
Mallat, S.G.1
Zhang, Z.2
-
31
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34:1436-1462, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
33
-
-
74049114503
-
p-values for high-dimensional regression
-
N. Meinshausen, L. Meier, and P. Bühlmann. p-values for high-dimensional regression. Journal of the American Statistical Association, 104(488):1671-1681, 2009.
-
(2009)
Journal of the American Statistical Association
, vol.104
, Issue.488
, pp. 1671-1681
-
-
Meinshausen, N.1
Meier, L.2
Bühlmann, P.3
-
35
-
-
78651272402
-
Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
-
J. Peng, J. Zhu, A. Bergamaschi, W. Han, D.-Y. Noh, J. R. Pollack, and P. Wang. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. The Annals of Applied Statistics, 4(1):53-77, 2010.
-
(2010)
The Annals of Applied Statistics
, vol.4
, Issue.1
, pp. 53-77
-
-
Peng, J.1
Zhu, J.2
Bergamaschi, A.3
Han, W.4
Noh, D.-Y.5
Pollack, J.R.6
Wang, P.7
-
39
-
-
77955057877
-
1-penalization for mixture regression models (with discussion)
-
1-penalization for mixture regression models (with discussion). Test, 19(2):209-256, 2010.
-
(2010)
Test
, vol.19
, Issue.2
, pp. 209-256
-
-
Städler, N.1
Bühlmann, P.2
Van De Geer, S.3
-
40
-
-
84869449202
-
Scaled sparse linear regression
-
T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):879-898, 2012.
-
(2012)
Biometrika
, vol.99
, Issue.4
, pp. 879-898
-
-
Sun, T.1
Zhang, C.-H.2
-
41
-
-
0001287271
-
Regression shrinkage and selection with the Lasso
-
R. Tibshirani. Regression shrinkage and selection with the Lasso. J. Royal. Statist. Soc B, 58:267-288, 1996.
-
(1996)
J. Royal. Statist. Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
42
-
-
77955054299
-
On the conditions used to prove oracle results for the Lasso
-
S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electron. J. Statist., 3:1360-1392, 2009.
-
(2009)
Electron. J. Statist.
, vol.3
, pp. 1360-1392
-
-
Van De Geer, S.1
Bühlmann, P.2
-
43
-
-
84988001472
-
On asymptotically optimal confidence regions and tests for high-dimensional models
-
arXiv Preprint arXiv:1303.0518, To appear in
-
S. van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence regions and tests for high-dimensional models. arXiv Preprint arXiv:1303.0518, (To appear in Annals of Statistics ), 2014.
-
(2014)
Annals of Statistics
-
-
Van De Geer, S.1
Bühlmann, P.2
Ritov, Y.3
Dezeure, R.4
-
45
-
-
84938533326
-
Introduction to the non-asymptotic analysis of random matrices
-
Y.C. Eldar and G. Kutyniok, editors, Cambridge University Press
-
R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y.C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages 210-268. Cambridge University Press, 2012.
-
(2012)
Compressed Sensing: Theory and Applications
, pp. 210-268
-
-
Vershynin, R.1
-
48
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
C-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2):894-942, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 894-942
-
-
Zhang, C.-H.1
|