메뉴 건너뛰기




Volumn , Issue , 2009, Pages 523-532

Convex non-negative matrix factorization in the wild

Author keywords

Archetypal analysis; Data handling; Data mining; Matrix decomposition; Non negative matrix factorization; Social network analysis

Indexed keywords

ARCHETYPAL ANALYSIS; CLUSTER CENTROIDS; CONVEX COMBINATIONS; CONVEX HULL; DATA POINTS; DATA SETS; EMBEDDINGS; EXPERIMENTAL EVALUATION; GAUSSIAN POINT; INPUT MATRICES; LARGE DATASETS; MATRIX DECOMPOSITION; NON-NEGATIVE MATRIX; NONNEGATIVE MATRIX FACTORIZATION; REAL WORLD DATA; RECONSTRUCTION QUALITY; SOCIAL NETWORK ANALYSIS; SOCIAL NETWORKS;

EID: 77951195721     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.55     Document Type: Conference Paper
Times cited : (48)

References (22)
  • 3
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-799, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-799
    • Lee, D.D.1    Seung, H.S.2
  • 5
    • 67049160153 scopus 로고    scopus 로고
    • Toward faster nonnegative matrix factorization: A new algorithm and comparisons
    • J. Kim and H. Park, "Toward faster nonnegative matrix factorization: A new algorithm and comparisons," in Proc. IEEE Int. Conf. on Data Mining, 2008.
    • (2008) Proc. IEEE Int. Conf. on Data Mining
    • Kim, J.1    Park, H.2
  • 6
    • 67049161175 scopus 로고    scopus 로고
    • Block-iterative algorithms for non-negative matrix approximation
    • S. Suvrit, "Block-iterative algorithms for non-negative matrix approximation," in Proc. IEEE Int. Conf. on Data Mining, 2008.
    • (2008) Proc. IEEE Int. Conf. on Data Mining
    • Suvrit, S.1
  • 8
    • 0028532769 scopus 로고
    • Archetypal analysis
    • A. Cutler and L. Breiman, "Archetypal Analysis," Technometrics, vol. 36, no. 4, pp. 338-347, 1994.
    • (1994) Technometrics , vol.36 , Issue.4 , pp. 338-347
    • Cutler, A.1    Breiman, L.2
  • 10
    • 22144471532 scopus 로고    scopus 로고
    • Neighborliness of randomly- projected simplices in high dimensions
    • D. Donoho and J. Tanner, "Neighborliness of Randomly- Projected Simplices in High Dimensions," Proc. of the Nat. Academy of Sciences, vol. 102, no. 27, pp. 9452-9457, 2005.
    • (2005) Proc. of the Nat. Academy of Sciences , vol.102 , Issue.27 , pp. 9452-9457
    • Donoho, D.1    Tanner, J.2
  • 11
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension low sample size data
    • P. Hall, J. Marron, and A. Neeman, "Geometric Representation of High Dimension Low Sample Size Data," J. of the Royal Statistical Society B, vol. 67, no. 3, pp. 427-444, 2005.
    • (2005) J. of the Royal Statistical Society B , vol.67 , Issue.3 , pp. 427-444
    • Hall, P.1    Marron, J.2    Neeman, A.3
  • 14
    • 84976803260 scopus 로고
    • Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
    • C. Faloutsos and K.-I. Lin, "FastMap: A Fast Algorithm for Indexing, Data-mining and Visualization of Traditional and Multimedia Datasets," in Proc. ACM SIGMOD, 1995.
    • (1995) Proc. ACM SIGMOD
    • Faloutsos, C.1    Lin, K.-I.2
  • 15
    • 22844457314 scopus 로고    scopus 로고
    • Limit theorems for the convex hull of random points in higher dimensions
    • I. Hueter, "Limit Theorems for the Convex Hull of Random Points in Higher Dimensions," Trans. of the American Mathematical Society, vol. 351, no. 11, pp. 4337-4363, 1999.
    • (1999) Trans. of the American Mathematical Society , vol.351 , Issue.11 , pp. 4337-4363
    • Hueter, I.1
  • 16
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman, "80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958-1970, 2008.
    • (2008) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 17
    • 58249092020 scopus 로고    scopus 로고
    • Non-negative matrix factorization: Ill-posedness and a geometric algorithm
    • B. Klingenberg, J. Curry, and A. Dougherty, ""non-negative matrix factorization: Ill-posedness and a geometric algorithm"," Pattern Recognition, vol. 42, no. 5, pp. 918 - 928, 2008.
    • (2008) Pattern Recognition , vol.42 , Issue.5 , pp. 918-928
    • Klingenberg, B.1    Curry, J.2    Dougherty, A.3
  • 18
    • 0001218562 scopus 로고
    • The statistical analysis of compositional data
    • J. Aitchison, "The Statistical Analysis of Compositional Data," J. of the Royal Statistical Society B, vol. 44, no. 2, pp. 139-177, 1982.
    • (1982) J. of the Royal Statistical Society B , vol.44 , Issue.2 , pp. 139-177
    • Aitchison, J.1
  • 22
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro, "Fast maximum margin matrix factorization for collaborative prediction," in Proc. Int. Conf. on Machine Learning, 2005.
    • (2005) Proc. Int. Conf. on Machine Learning
    • Rennie, J.1    Srebro, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.