메뉴 건너뛰기




Volumn 550, Issue 7676, 2017, Pages

Human TRPML1 channel structures in open and closed conformations

Author keywords

[No Author keywords available]

Indexed keywords

AROMATIC COMPOUND; CALCIUM CHANNEL; TRANSIENT RECEPTOR POTENTIAL CHANNEL; TRANSIENT RECEPTOR POTENTIAL MUCOLIPIN 1; UNCLASSIFIED DRUG; APOPROTEIN; LIGAND; MCOLN1 PROTEIN, HUMAN;

EID: 85031919260     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature24036     Document Type: Article
Times cited : (109)

References (59)
  • 2
    • 84922794140 scopus 로고    scopus 로고
    • Lysosomal physiology
    • Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57-80 (2015).
    • (2015) Annu. Rev. Physiol. , vol.77 , pp. 57-80
    • Xu, H.1    Ren, D.2
  • 3
    • 84930541540 scopus 로고    scopus 로고
    • The role of TRPMLs in endolysosomal trafficking and function
    • Venkatachalam, K., Wong, C. O. & Zhu, M. X. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58, 48-56 (2015).
    • (2015) Cell Calcium , vol.58 , pp. 48-56
    • Venkatachalam, K.1    Wong, C.O.2    Zhu, M.X.3
  • 4
    • 84884154195 scopus 로고    scopus 로고
    • A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis
    • Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511-524 (2013).
    • (2013) Dev. Cell , vol.26 , pp. 511-524
    • Samie, M.1
  • 5
    • 45149103982 scopus 로고    scopus 로고
    • Membrane traffic and turnover in TRP-ML1-deficient cells: A revised model for mucolipidosis type IV pathogenesis
    • Miedel, M. T. et al. Membrane traffic and turnover in TRP-ML1-deficient cells: A revised model for mucolipidosis type IV pathogenesis. J. Exp. Med. 205, 1477-1490 (2008).
    • (2008) J. Exp. Med. , vol.205 , pp. 1477-1490
    • Miedel, M.T.1
  • 6
    • 84960158035 scopus 로고    scopus 로고
    • A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation
    • Li, X. et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404-417 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 404-417
    • Li, X.1
  • 7
    • 56349119573 scopus 로고    scopus 로고
    • Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells
    • Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838-851 (2008).
    • (2008) Cell , vol.135 , pp. 838-851
    • Venkatachalam, K.1
  • 9
    • 84977119521 scopus 로고    scopus 로고
    • MCOLN1 is a ROS sensor in lysosomes that regulates autophagy
    • Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12109
    • Zhang, X.1
  • 10
    • 77949695459 scopus 로고    scopus 로고
    • TRP channels of intracellular membranes
    • Dong, X. P., Wang, X. & Xu, H. TRP channels of intracellular membranes. J. Neurochem. 113, 313-328 (2010).
    • (2010) J. Neurochem. , vol.113 , pp. 313-328
    • Dong, X.P.1    Wang, X.2    Xu, H.3
  • 11
    • 33646344988 scopus 로고    scopus 로고
    • TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity
    • Soyombo, A. A. et al. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J. Biol. Chem. 281, 7294-7301 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 7294-7301
    • Soyombo, A.A.1
  • 12
    • 84859175854 scopus 로고    scopus 로고
    • Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release
    • Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 731
    • Shen, D.1
  • 13
    • 84907320441 scopus 로고    scopus 로고
    • A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV
    • Chen, C. C. et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun. 5, 4681 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4681
    • Chen, C.C.1
  • 14
    • 84863922724 scopus 로고    scopus 로고
    • Phosphoinositide isoforms determine compartmentspecific ion channel activity
    • Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartmentspecific ion channel activity. Proc. Natl Acad. Sci. USA 109, 11384-11389 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 11384-11389
    • Zhang, X.1    Li, X.2    Xu, H.3
  • 15
    • 80051473235 scopus 로고    scopus 로고
    • PI(3, 5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome
    • Dong, X. P. et al. PI(3, 5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).
    • (2010) Nat. Commun. , vol.1 , pp. 38
    • Dong, X.P.1
  • 16
  • 17
    • 0034641869 scopus 로고    scopus 로고
    • Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel
    • Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471-2478 (2000).
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 2471-2478
    • Sun, M.1
  • 18
    • 0033822172 scopus 로고    scopus 로고
    • Identification of the gene causing mucolipidosis type IV
    • Bargal, R. et al. Identification of the gene causing mucolipidosis type IV. Nat. Genet. 26, 118-123 (2000).
    • (2000) Nat. Genet. , vol.26 , pp. 118-123
    • Bargal, R.1
  • 19
    • 0033760264 scopus 로고    scopus 로고
    • Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV
    • Bassi, M. T. et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet. 67, 1110-1120 (2000).
    • (2000) Am. J. Hum. Genet. , vol.67 , pp. 1110-1120
    • Bassi, M.T.1
  • 20
    • 0023988795 scopus 로고
    • Clinical spectrum of mucolipidosis type IV
    • Weitz, R. & Kohn, G. Clinical spectrum of mucolipidosis type IV. Pediatrics 81, 602-603 (1988).
    • (1988) Pediatrics , vol.81 , pp. 602-603
    • Weitz, R.1    Kohn, G.2
  • 21
    • 0034894817 scopus 로고    scopus 로고
    • Mucolipidosis type IV
    • Bach, G. Mucolipidosis type IV. Mol. Genet. Metab. 73, 197-203 (2001).
    • (2001) Mol. Genet. Metab. , vol.73 , pp. 197-203
    • Bach, G.1
  • 25
    • 0037069373 scopus 로고    scopus 로고
    • Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice
    • Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA 99, 14994-14999 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 14994-14999
    • Di Palma, F.1
  • 26
    • 84889594608 scopus 로고    scopus 로고
    • TRPV1 structures in distinct conformations reveal activation mechanisms
    • Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113-118 (2013).
    • (2013) Nature , vol.504 , pp. 113-118
    • Cao, E.1    Liao, M.2    Cheng, Y.3    Julius, D.4
  • 27
    • 84889607320 scopus 로고    scopus 로고
    • Structure of the TRPV1 ion channel determined by electron cryo-microscopy
    • Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-112 (2013).
    • (2013) Nature , vol.504 , pp. 107-112
    • Liao, M.1    Cao, E.2    Julius, D.3    Cheng, Y.4
  • 28
    • 84928474213 scopus 로고    scopus 로고
    • Structure of the TRPA1 ion channel suggests regulatory mechanisms
    • Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511-517 (2015).
    • (2015) Nature , vol.520 , pp. 511-517
    • Paulsen, C.E.1    Armache, J.P.2    Gao, Y.3    Cheng, Y.4    Julius, D.5
  • 29
    • 84969627248 scopus 로고    scopus 로고
    • TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action
    • Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347-351 (2016).
    • (2016) Nature , vol.534 , pp. 347-351
    • Gao, Y.1    Cao, E.2    Julius, D.3    Cheng, Y.4
  • 30
    • 84956830463 scopus 로고    scopus 로고
    • Cryo-electron microscopy structure of the TRPV2 ion channel
    • Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180-186 (2016).
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 180-186
    • Zubcevic, L.1
  • 31
    • 84962635518 scopus 로고    scopus 로고
    • Structure of the full-length TRPV2 channel by cryo-EM
    • Huynh, K. W. et al. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 7, 11130 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11130
    • Huynh, K.W.1
  • 32
    • 84992597299 scopus 로고    scopus 로고
    • The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs
    • Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763-773. e11, (2016).
    • (2016) Cell , vol.167 , pp. 763e11-773e11
    • Shen, P.S.1
  • 33
    • 85009831976 scopus 로고    scopus 로고
    • Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2
    • Wilkes, M. et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24, 123-130 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 123-130
    • Wilkes, M.1
  • 34
    • 85006515501 scopus 로고    scopus 로고
    • Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2)
    • Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114-122 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 114-122
    • Grieben, M.1
  • 35
    • 85010872102 scopus 로고    scopus 로고
    • Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel
    • Li, M. et al. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 24, 205-213 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 205-213
    • Li, M.1
  • 36
    • 84908199292 scopus 로고    scopus 로고
    • Screening and large-scale expression of membrane proteins in mammalian cells for structural studies
    • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protocols 9, 2574-2585 (2014).
    • (2014) Nat. Protocols , vol.9 , pp. 2574-2585
    • Goehring, A.1
  • 37
    • 84984650226 scopus 로고    scopus 로고
    • Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs
    • Tang, L. et al. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537, 117-121 (2016).
    • (2016) Nature , vol.537 , pp. 117-121
    • Tang, L.1
  • 38
    • 33644655372 scopus 로고    scopus 로고
    • Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes
    • Vergarajauregui, S. & Puertollano, R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7, 337-353 (2006).
    • (2006) Traffic , vol.7 , pp. 337-353
    • Vergarajauregui, S.1    Puertollano, R.2
  • 39
    • 70450236985 scopus 로고    scopus 로고
    • Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis
    • Dong, X. P. et al. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem. 284, 32040-32052 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 32040-32052
    • Dong, X.P.1
  • 40
    • 84986294588 scopus 로고    scopus 로고
    • Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2
    • Li, X., Saha, P., Li, J., Blobel, G. & Pfeffer, S. R. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc. Natl Acad. Sci. USA 113, 10079-10084 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 10079-10084
    • Li, X.1    Saha, P.2    Li, J.3    Blobel, G.4    Pfeffer, S.R.5
  • 41
    • 85016585056 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells
    • Pipalia, N. H. et al. Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. J. Lipid Res. 58, 695-708 (2017).
    • (2017) J. Lipid Res. , vol.58 , pp. 695-708
    • Pipalia, N.H.1
  • 42
    • 85031944385 scopus 로고    scopus 로고
    • Structure of mammalian endolysosomal TRPML1 channel in nanodiscs
    • Chen, Q. et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature http://doi. org/10. 1038/nature24035 (2017).
    • (2017) Nature
    • Chen, Q.1
  • 43
    • 78650876286 scopus 로고    scopus 로고
    • Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: A new approach to membrane recycling and lipid domains
    • Fine, M. et al. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: A new approach to membrane recycling and lipid domains. J. Gen. Physiol. 137, 137-154 (2011).
    • (2011) J. Gen. Physiol. , vol.137 , pp. 137-154
    • Fine, M.1
  • 44
    • 48749083258 scopus 로고    scopus 로고
    • Ca-dependent nonsecretory vesicle fusion in a secretory cell
    • Wang, T. M. & Hilgemann, D. W. Ca-dependent nonsecretory vesicle fusion in a secretory cell. J. Gen. Physiol. 132, 51-65 (2008).
    • (2008) J. Gen. Physiol. , vol.132 , pp. 51-65
    • Wang, T.M.1    Hilgemann, D.W.2
  • 45
    • 84930634509 scopus 로고    scopus 로고
    • Measuring the optimal exposure for single particle cryo-EM using a 2. 6 Å reconstruction of rotavirus VP6
    • Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2. 6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).
    • (2015) ELife , vol.4 , pp. e06980
    • Grant, T.1    Grigorieff, N.2
  • 46
    • 84946488108 scopus 로고    scopus 로고
    • CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216-221 (2015).
    • (2015) J. Struct. Biol. , vol.192 , pp. 216-221
    • Rohou, A.1    Grigorieff, N.2
  • 47
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
    • (2012) J. Struct. Biol. , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 48
    • 84946473054 scopus 로고    scopus 로고
    • Alignment of cryo-EM movies of individual particles by optimization of image translations
    • Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188-195 (2015).
    • (2015) J. Struct. Biol. , vol.192 , pp. 188-195
    • Rubinstein, J.L.1    Brubaker, M.A.2
  • 49
    • 84974849211 scopus 로고    scopus 로고
    • Frealign: An exploratory tool for single-particle cryo-EM
    • Grigorieff, N. Frealign: An exploratory tool for single-particle cryo-EM. Methods Enzymol. 579, 191-226 (2016).
    • (2016) Methods Enzymol. , vol.579 , pp. 191-226
    • Grigorieff, N.1
  • 51
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 52
    • 0030924992 scopus 로고    scopus 로고
    • Refinement of macromolecular structures by the maximum-likelihood method
    • Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240-255 (1997).
    • (1997) Acta Crystallogr. D , vol.53 , pp. 240-255
    • Murshudov, G.N.1    Vagin, A.A.2    Dodson, E.J.3
  • 53
    • 84921777915 scopus 로고    scopus 로고
    • Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions
    • Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136-153 (2015).
    • (2015) Acta Crystallogr. D , vol.71 , pp. 136-153
    • Brown, A.1
  • 54
    • 0000060882 scopus 로고
    • Efficient structure-factor calculation for large molecules by the fast Fourier transform
    • Ten Eyck, L. F. Efficient structure-factor calculation for large molecules by the fast Fourier transform. Acta Crystallogr. A 33, 486-492 (1977).
    • (1977) Acta Crystallogr. A , vol.33 , pp. 486-492
    • Ten Eyck, L.F.1
  • 55
    • 84919444103 scopus 로고    scopus 로고
    • An atomic model of brome mosaic virus using direct electron detection and real-space optimization
    • Wang, Z. et al. An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat. Commun. 5, 4808 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4808
    • Wang, Z.1
  • 56
    • 33845336533 scopus 로고    scopus 로고
    • Bsoft: Image processing and molecular modeling for electron microscopy
    • Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3-18 (2007).
    • (2007) J. Struct. Biol. , vol.157 , pp. 3-18
    • Heymann, J.B.1    Belnap, D.M.2
  • 57
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V. B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 12-21
    • Chen, V.B.1
  • 58
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera-a visualization system for exploratory research and analysis
    • Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 59
    • 0030404988 scopus 로고    scopus 로고
    • HOLE: A program for the analysis of the pore dimensions of ion channel structural models
    • 376
    • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354-360, 376 (1996).
    • (1996) J. Mol. Graph. , vol.14 , pp. 354-360
    • Smart, O.S.1    Neduvelil, J.G.2    Wang, X.3    Wallace, B.A.4    Sansom, M.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.