메뉴 건너뛰기




Volumn 26, Issue 5, 2017, Pages 2333-2355

A review of instrumental variable estimators for Mendelian randomization

Author keywords

causal inference; comparison of methods; finite sample bias; Instrumental variable; Mendelian randomization; weak instruments

Indexed keywords

GENETIC VARIABILITY; HUMAN; MENDELIAN RANDOMIZATION ANALYSIS; RANDOMIZED CONTROLLED TRIAL; RISK FACTOR; SAMPLING BIAS; BAYES THEOREM; CASE CONTROL STUDY; CAUSALITY; CONFIDENCE INTERVAL; GENETIC VARIATION; LEAST SQUARE ANALYSIS; PROCEDURES; STATISTICAL MODEL;

EID: 85031678782     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280215597579     Document Type: Review
Times cited : (1037)

References (144)
  • 1
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland S,. An introduction to instrumental variables for epidemiologists. Int J Epidemiol 2000; 29: 722-729.
    • (2000) Int J Epidemiol , vol.29 , pp. 722-729
    • Greenland, S.1
  • 2
    • 33646809746 scopus 로고    scopus 로고
    • Instrumental variables: Application and limitations
    • Martens EP, Pestman WR, de Boer A, et al. Instrumental variables: application and limitations. Epidemiology 2006; 17: 260-267.
    • (2006) Epidemiology , vol.17 , pp. 260-267
    • Martens, E.P.1    Pestman, W.R.2    De Boer, A.3
  • 3
    • 0030914851 scopus 로고    scopus 로고
    • Econometric approaches to epidemiologic data: Relating endogeneity and unobserved heterogeneity to confounding
    • Zohoori N, Savitz DA,. Econometric approaches to epidemiologic data: relating endogeneity and unobserved heterogeneity to confounding. Ann Epidemiol 1997; 7: 251-257.
    • (1997) Ann Epidemiol , vol.7 , pp. 251-257
    • Zohoori, N.1    Savitz, D.A.2
  • 4
    • 70350574644 scopus 로고    scopus 로고
    • Instrumental variables I: Instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
    • Rassen JA, Brookhart MA, Glynn RJ, et al. Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. J Clin Epidemiol 2009; 62: 1226-1232.
    • (2009) J Clin Epidemiol , vol.62 , pp. 1226-1232
    • Rassen, J.A.1    Brookhart, M.A.2    Glynn, R.J.3
  • 5
    • 40849083720 scopus 로고    scopus 로고
    • Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology
    • Lawlor D, Harbord R, Sterne J, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27: 1133-1163.
    • (2008) Stat Med , vol.27 , pp. 1133-1163
    • Lawlor, D.1    Harbord, R.2    Sterne, J.3
  • 6
    • 0037322022 scopus 로고    scopus 로고
    • 'Mendelian randomization': Can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Davey Smith G, Ebrahim S,. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1-22.
    • (2003) Int J Epidemiol , vol.32 , pp. 1-22
    • Davey Smith, G.1    Ebrahim, S.2
  • 7
    • 84872042939 scopus 로고    scopus 로고
    • Use of Mendelian randomisation to assess potential benefit of clinical intervention
    • Burgess S, Butterworth A, Malarstig A, et al. Use of Mendelian randomisation to assess potential benefit of clinical intervention. Br Med J 2012; 345: e7325.
    • (2012) Br Med J , vol.345 , pp. e7325
    • Burgess, S.1    Butterworth, A.2    Malarstig, A.3
  • 8
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: An epidemiologist's dream?
    • Hernán MA, Robins JM,. Instruments for causal inference: an epidemiologist's dream? Epidemiology 2006; 17: 360-372.
    • (2006) Epidemiology , vol.17 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 9
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomization as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N,. Mendelian randomization as an instrumental variable approach to causal inference. Stat Meth Med Res 2007; 16: 309-330.
    • (2007) Stat Meth Med Res , vol.16 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 10
    • 84856718639 scopus 로고    scopus 로고
    • Credible Mendelian randomization studies: Approaches for evaluating the instrumental variable assumptions
    • Glymour MM, Tchetgen Tchetgen EJ, Robins JM,. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am J Epidemiol 2012; 175: 332-339.
    • (2012) Am J Epidemiol , vol.175 , pp. 332-339
    • Glymour, M.M.1    Tchetgen Tchetgen, E.J.2    Robins, J.M.3
  • 11
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB,. Identification of causal effects using instrumental variables. J Am Stat Assoc 1996; 91: 444-455.
    • (1996) J Am Stat Assoc , vol.91 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 12
    • 77957778209 scopus 로고    scopus 로고
    • Assumptions of IV methods for observational epidemiology
    • Didelez V, Meng S, Sheehan NA,. Assumptions of IV methods for observational epidemiology. Stat Sci 2010; 25: 22-40.
    • (2010) Stat Sci , vol.25 , pp. 22-40
    • Didelez, V.1    Meng, S.2    Sheehan, N.A.3
  • 13
    • 84899953597 scopus 로고    scopus 로고
    • Instrumental variable methods for causal inference
    • Baiocchi M, Cheng J, Small DS,. Instrumental variable methods for causal inference. Stat Med 2014; 33: 2297-2340.
    • (2014) Stat Med , vol.33 , pp. 2297-2340
    • Baiocchi, M.1    Cheng, J.2    Small, D.S.3
  • 14
    • 84861827079 scopus 로고    scopus 로고
    • Using multiple genetic variants as instrumental variables for modifiable risk factors
    • Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Meth Med Res 2011; 21: 223-242.
    • (2011) Stat Meth Med Res , vol.21 , pp. 223-242
    • Palmer, T.M.1    Lawlor, D.A.2    Harbord, R.M.3
  • 15
    • 84871988173 scopus 로고    scopus 로고
    • Instrumental variable estimators for binary outcomes
    • Clarke PS, Windmeijer F,. Instrumental variable estimators for binary outcomes. J Am Stat Assoc 2012; 107: 1638-1652.
    • (2012) J Am Stat Assoc , vol.107 , pp. 1638-1652
    • Clarke, P.S.1    Windmeijer, F.2
  • 16
    • 79958821064 scopus 로고    scopus 로고
    • Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses
    • Palmer TM, Sterne JAC, Harbord RM, et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 2011; 173: 1392-1403.
    • (2011) Am J Epidemiol , vol.173 , pp. 1392-1403
    • Palmer, T.M.1    Sterne, J.A.C.2    Harbord, R.M.3
  • 17
    • 82655179692 scopus 로고    scopus 로고
    • On instrumental variables estimation of causal odds ratios
    • Vansteelandt S, Bowden J, Babanezhad M, et al. On instrumental variables estimation of causal odds ratios. Stat Sci 2011; 26: 403-422.
    • (2011) Stat Sci , vol.26 , pp. 403-422
    • Vansteelandt, S.1    Bowden, J.2    Babanezhad, M.3
  • 18
    • 84876295967 scopus 로고    scopus 로고
    • Issues in the reporting and conduct of instrumental variable studies: A systematic review
    • Davies NM, Smith GD, Windmeijer F, et al. Issues in the reporting and conduct of instrumental variable studies: a systematic review. Epidemiology 2013; 24: 363-369.
    • (2013) Epidemiology , vol.24 , pp. 363-369
    • Davies, N.M.1    Smith, G.D.2    Windmeijer, F.3
  • 19
    • 79955576466 scopus 로고    scopus 로고
    • Bias in causal estimates from Mendelian randomization studies with weak instruments
    • Burgess S, Thompson SG,. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med 2011; 30: 1312-1323.
    • (2011) Stat Med , vol.30 , pp. 1312-1323
    • Burgess, S.1    Thompson, S.G.2
  • 20
    • 85000329850 scopus 로고    scopus 로고
    • An IV for the RCT: Using instrumental variables to adjust for treatment contamination in randomised controlled trials
    • Sussman JB, Hayward RA,. An IV for the RCT: using instrumental variables to adjust for treatment contamination in randomised controlled trials. Br Med J 2010; 340: c2073.
    • (2010) Br Med J , vol.340 , pp. c2073
    • Sussman, J.B.1    Hayward, R.A.2
  • 21
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE, Rubin DB,. Principal stratification in causal inference. Biometrics 2002; 58: 21-29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 22
    • 50949084462 scopus 로고    scopus 로고
    • Mendelian randomisation and causal inference in observational epidemiology
    • Sheehan NA, Didelez V, Burton PR, et al. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 2008; 5: e177.
    • (2008) PLoS Med , vol.5 , pp. e177
    • Sheehan, N.A.1    Didelez, V.2    Burton, P.R.3
  • 23
    • 67049167090 scopus 로고    scopus 로고
    • Genetically elevated lipoprotein(a) and increased risk of myocardial infarction
    • Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, et al. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. J Am Med Assoc 2009; 301: 2331-2339.
    • (2009) J Am Med Assoc , vol.301 , pp. 2331-2339
    • Kamstrup, P.R.1    Tybjaerg-Hansen, A.2    Steffensen, R.3
  • 24
    • 30244508525 scopus 로고    scopus 로고
    • Bounds on treatment effects from studies with imperfect compliance
    • Balke A, Pearl J,. Bounds on treatment effects from studies with imperfect compliance. J Am Stat Assoc 1997; 92: 1171-1176.
    • (1997) J Am Stat Assoc , vol.92 , pp. 1171-1176
    • Balke, A.1    Pearl, J.2
  • 25
    • 27744504133 scopus 로고    scopus 로고
    • Nonparametric identification under discrete variation
    • Chesher A,. Nonparametric identification under discrete variation. Econometrica 2005; 73: 1525-1550.
    • (2005) Econometrica , vol.73 , pp. 1525-1550
    • Chesher, A.1
  • 27
    • 0001566850 scopus 로고
    • Identification and estimation of local average treatment effects
    • Imbens GW, Angrist JD,. Identification and estimation of local average treatment effects. Econometrica 1994; 62: 467-475.
    • (1994) Econometrica , vol.62 , pp. 467-475
    • Imbens, G.W.1    Angrist, J.D.2
  • 28
    • 1542574387 scopus 로고    scopus 로고
    • Inference for the complier-Average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed
    • Yau LH, Little RJ,. Inference for the complier-Average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed. J Am Stat Assoc 2001; 96: 1232-1244.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1232-1244
    • Yau, L.H.1    Little, R.J.2
  • 29
    • 84876258577 scopus 로고    scopus 로고
    • Commentary: How to report instrumental variable analyses (suggestions welcome)
    • Swanson S, Hernán M,. Commentary: how to report instrumental variable analyses (suggestions welcome). Epidemiology 2013; 24: 370-374.
    • (2013) Epidemiology , vol.24 , pp. 370-374
    • Swanson, S.1    Hernán, M.2
  • 30
    • 0002596470 scopus 로고
    • The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies
    • In: (eds). Washington, DC: National Center for Health Services Research
    • Robins JM, The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In: Sechrest L, Freeman HE, Mulley AG, (eds). Health service research methodology: a focus on AIDS, Washington, DC: National Center for Health Services Research, 1989, pp. 113-159.
    • (1989) Health Service Research Methodology: A Focus on AIDS , pp. 113-159
    • Robins, J.M.1    Sechrest, L.2    Freeman, H.E.3    Mulley, A.G.4
  • 31
    • 84989891314 scopus 로고    scopus 로고
    • Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models
    • 2016; 25: 1925-1937
    • Pang M, Kaufman JS, Platt RW,. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Meth Med Res. 2016; 25: 1925-1937.
    • Stat Meth Med Res
    • Pang, M.1    Kaufman, J.S.2    Platt, R.W.3
  • 33
    • 0001294645 scopus 로고
    • The fitting of straight lines if both variables are subject to error
    • Wald A,. The fitting of straight lines if both variables are subject to error. Ann Math Stat 1940; 11: 284-300.
    • (1940) Ann Math Stat , vol.11 , pp. 284-300
    • Wald, A.1
  • 34
    • 84927727976 scopus 로고    scopus 로고
    • Instrumental variable analysis with a nonlinear exposure-outcome relationship
    • Burgess S, Davies N, Thompson S, et al. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology 2014; 25: 877-885.
    • (2014) Epidemiology , vol.25 , pp. 877-885
    • Burgess, S.1    Davies, N.2    Thompson, S.3
  • 35
    • 0019995860 scopus 로고
    • On the need for the rare disease assumption in case-control studies
    • Greenland S, Thomas DC,. On the need for the rare disease assumption in case-control studies. Am J Epidemiol 1982; 116: 547-553.
    • (1982) Am J Epidemiol , vol.116 , pp. 547-553
    • Greenland, S.1    Thomas, D.C.2
  • 36
    • 0003485198 scopus 로고    scopus 로고
    • Boca Raton, FL: Chapman and Hall/CRC Press
    • Collett D,. Modelling binary data, Boca Raton, FL: Chapman and Hall/CRC Press, 2003.
    • (2003) Modelling Binary Data
    • Collett, D.1
  • 37
    • 4444364446 scopus 로고    scopus 로고
    • An integrated approach to the meta-Analysis of genetic association studies using Mendelian randomization
    • Minelli C, Thompson J, Tobin M, et al. An integrated approach to the meta-Analysis of genetic association studies using Mendelian randomization. Am J Epidemiol 2004; 160: 445-452.
    • (2004) Am J Epidemiol , vol.160 , pp. 445-452
    • Minelli, C.1    Thompson, J.2    Tobin, M.3
  • 38
    • 79951693616 scopus 로고    scopus 로고
    • Mendelian randomisation analysis of case-control data using structural mean models
    • Bowden J, Vansteelandt S,. Mendelian randomisation analysis of case-control data using structural mean models. Stat Med 2011; 30: 678-694.
    • (2011) Stat Med , vol.30 , pp. 678-694
    • Bowden, J.1    Vansteelandt, S.2
  • 39
    • 34250655804 scopus 로고    scopus 로고
    • Re: Estimation of bias in nongenetic observational studies using "mendelian triangulation" by Bautista et al
    • Thomas DC, Lawlor DA, Thompson JR,. Re: Estimation of bias in nongenetic observational studies using "Mendelian triangulation" by Bautista et al. Ann Epidemiol 2007; 17: 511-513.
    • (2007) Ann Epidemiol , vol.17 , pp. 511-513
    • Thomas, D.C.1    Lawlor, D.A.2    Thompson, J.R.3
  • 40
    • 0000991825 scopus 로고
    • Some problems in interval estimation
    • Fieller E,. Some problems in interval estimation. J R Stat Soc Ser B 1954; 16: 175-185.
    • (1954) J R Stat Soc ser B , vol.16 , pp. 175-185
    • Fieller, E.1
  • 42
    • 84862638857 scopus 로고    scopus 로고
    • Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes
    • Burgess S, Thompson SG,. Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Stat Med 2012; 31: 1582-1600.
    • (2012) Stat Med , vol.31 , pp. 1582-1600
    • Burgess, S.1    Thompson, S.G.2
  • 44
    • 12844270597 scopus 로고    scopus 로고
    • Robust, accurate confidence intervals with a weak instrument: Quarter of birth and education
    • Imbens G, Rosenbaum P,. Robust, accurate confidence intervals with a weak instrument: quarter of birth and education. J R Stat Soc Ser A 2005; 168: 109-126.
    • (2005) J R Stat Soc ser A , vol.168 , pp. 109-126
    • Imbens, G.1    Rosenbaum, P.2
  • 45
    • 63149101495 scopus 로고    scopus 로고
    • Bootstrap validity for the score test when instruments may be weak
    • Moreira M, Porter J, Suarez G,. Bootstrap validity for the score test when instruments may be weak. J Econometr 2009; 149: 52-64.
    • (2009) J Econometr , vol.149 , pp. 52-64
    • Moreira, M.1    Porter, J.2    Suarez, G.3
  • 46
    • 0001418630 scopus 로고
    • Estimators of the parameters of a single equation in a complete set of stochastic equations
    • Anderson TW, Rubin H,. Estimators of the parameters of a single equation in a complete set of stochastic equations. Ann Math Stat 1949; 21: 570-582.
    • (1949) Ann Math Stat , vol.21 , pp. 570-582
    • Anderson, T.W.1    Rubin, H.2
  • 47
    • 0141718527 scopus 로고    scopus 로고
    • A conditional likelihood ratio test for structural models
    • Moreira M,. A conditional likelihood ratio test for structural models. Econometrica 2003; 71: 1027-1048.
    • (2003) Econometrica , vol.71 , pp. 1027-1048
    • Moreira, M.1
  • 48
    • 65949122959 scopus 로고    scopus 로고
    • Generalized method of moments with many weak moment conditions
    • Newey WK, Windmeijer F,. Generalized method of moments with many weak moment conditions. Econometrica 2009; 77: 687-719.
    • (2009) Econometrica , vol.77 , pp. 687-719
    • Newey, W.K.1    Windmeijer, F.2
  • 49
    • 77953710617 scopus 로고    scopus 로고
    • Robust confidence sets in the presence of weak instruments
    • Mikusheva A,. Robust confidence sets in the presence of weak instruments. J Econometr 2010; 157: 236-247.
    • (2010) J Econometr , vol.157 , pp. 236-247
    • Mikusheva, A.1
  • 50
    • 84901820345 scopus 로고    scopus 로고
    • Confidence sets based on inverting Anderson-Rubin tests
    • Davidson R, MacKinnon J,. Confidence sets based on inverting Anderson-Rubin tests. Econometr J 2014; 17: S39-S58.
    • (2014) Econometr J , vol.17 , pp. S39-S58
    • Davidson, R.1    MacKinnon, J.2
  • 51
    • 33749399883 scopus 로고    scopus 로고
    • Tests and confidence sets with correct size when instruments are potentially weak
    • Mikusheva A, Poi BP,. Tests and confidence sets with correct size when instruments are potentially weak. Stata J 2006; 6: 335-347.
    • (2006) Stata J , vol.6 , pp. 335-347
    • Mikusheva, A.1    Poi, B.P.2
  • 52
    • 85031677303 scopus 로고    scopus 로고
    • Small D. ivpack: instrumental variable estimation. R package version 1.1, (2014, accessed 24 July 2015)
    • Small D. ivpack: instrumental variable estimation. R package version 1.1, http://cran.r-project.org/package=ivpack (2014, accessed 24 July 2015).
  • 53
    • 0018913365 scopus 로고
    • The existence of moments of k-class estimators
    • Kinal TW,. The existence of moments of k-class estimators. Econometrica 1980; 48: 241-249.
    • (1980) Econometrica , vol.48 , pp. 241-249
    • Kinal, T.W.1
  • 54
    • 27744453963 scopus 로고    scopus 로고
    • Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations
    • Hahn J, Hausman JA, Kuersteiner GM,. Estimation with weak instruments: accuracy of higher-order bias and MSE approximations. Econometr J 2004; 7: 272-306.
    • (2004) Econometr J , vol.7 , pp. 272-306
    • Hahn, J.1    Hausman, J.A.2    Kuersteiner, G.M.3
  • 55
    • 0034546907 scopus 로고    scopus 로고
    • The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish
    • Angrist JD, Graddy K, Imbens GW,. The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev Econ Stud 2000; 67: 499-527.
    • (2000) Rev Econ Stud , vol.67 , pp. 499-527
    • Angrist, J.D.1    Graddy, K.2    Imbens, G.W.3
  • 56
    • 84862696298 scopus 로고    scopus 로고
    • Chapter 4: Instrumental variables in action: Sometimes you get what you need
    • Princeton, NJ: Princeton University Press
    • Angrist JD, Pischke JS,. Chapter 4: Instrumental variables in action: sometimes you get what you need. Mostly harmless econometrics: an empiricist's companion, Princeton, NJ: Princeton University Press, 2009, pp. 113-220.
    • (2009) Mostly Harmless Econometrics: An Empiricist's Companion , pp. 113-220
    • Angrist, J.D.1    Pischke, J.S.2
  • 58
    • 0034361250 scopus 로고    scopus 로고
    • Correcting for regression dilution bias: Comparison of methods for a single predictor variable
    • Frost C, Thompson SG,. Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc Ser A 2000; 163: 173-189.
    • (2000) J R Stat Soc ser A , vol.163 , pp. 173-189
    • Frost, C.1    Thompson, S.G.2
  • 59
    • 84867606063 scopus 로고    scopus 로고
    • The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies
    • Pierce B, VanderWeele T,. The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies. Int J Epidemiol 2012; 41: 1383-1393.
    • (2012) Int J Epidemiol , vol.41 , pp. 1383-1393
    • Pierce, B.1    VanderWeele, T.2
  • 60
    • 18244399563 scopus 로고    scopus 로고
    • Instrumental variables, bootstrapping, and generalized linear models
    • Hardin J, Schmiediche H, Carroll R,. Instrumental variables, bootstrapping, and generalized linear models. Stata J 2003; 3: 351-360.
    • (2003) Stata J , vol.3 , pp. 351-360
    • Hardin, J.1    Schmiediche, H.2    Carroll, R.3
  • 61
    • 0010462970 scopus 로고    scopus 로고
    • Instrumental variables for logistic regression: An illustration
    • Foster E,. Instrumental variables for logistic regression: an illustration. Soc Sci Res 1997; 26: 487-504.
    • (1997) Soc Sci Res , vol.26 , pp. 487-504
    • Foster, E.1
  • 62
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins J, Pearl J,. Confounding and collapsibility in causal inference. Stat Sci 1999; 14: 29-46.
    • (1999) Stat Sci , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.2    Pearl, J.3
  • 63
    • 0001743726 scopus 로고
    • Testing collapsibility in contingency tables
    • Ducharme GR, LePage Y,. Testing collapsibility in contingency tables. J R Stat Soc Ser B 1986; 48: 197-205.
    • (1986) J R Stat Soc ser B , vol.48 , pp. 197-205
    • Ducharme, G.R.1    LePage, Y.2
  • 64
    • 84898057789 scopus 로고    scopus 로고
    • Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model
    • CCGC (CRP CHD Genetics Collaboration)
    • Burgess S, CCGC (CRP CHD Genetics Collaboration),. Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model. Stat Med 2013; 32: 4726-4747.
    • (2013) Stat Med , vol.32 , pp. 4726-4747
    • Burgess, S.1
  • 65
    • 0034734141 scopus 로고    scopus 로고
    • Estimating treatment effects in randomized clinical trials in the presence of non-compliance
    • Nagelkerke N, Fidler V, Bernsen R, et al. Estimating treatment effects in randomized clinical trials in the presence of non-compliance. Stat Med 2000; 19: 1849-1864.
    • (2000) Stat Med , vol.19 , pp. 1849-1864
    • Nagelkerke, N.1    Fidler, V.2    Bernsen, R.3
  • 66
    • 43549116852 scopus 로고    scopus 로고
    • Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling
    • Terza JV, Basu A, Rathouz PJ,. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. J Health Econ 2008; 27: 531-543.
    • (2008) J Health Econ , vol.27 , pp. 531-543
    • Terza, J.V.1    Basu, A.2    Rathouz, P.J.3
  • 67
    • 53349140946 scopus 로고    scopus 로고
    • Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses
    • Palmer T, Thompson J, Tobin M, et al. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Int J Epidemiol 2008; 37: 1161-1168.
    • (2008) Int J Epidemiol , vol.37 , pp. 1161-1168
    • Palmer, T.1    Thompson, J.2    Tobin, M.3
  • 68
    • 79958753488 scopus 로고    scopus 로고
    • Two-stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias
    • Cai B, Small DS, Ten Have TR,. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias. Stat Med 2011; 30: 1809-1824.
    • (2011) Stat Med , vol.30 , pp. 1809-1824
    • Cai, B.1    Small, D.S.2    Ten Have, T.R.3
  • 70
    • 0002050823 scopus 로고
    • Three-stage least squares: Simultaneous estimation of simultaneous equations
    • Zellner A, Theil H,. Three-stage least squares: simultaneous estimation of simultaneous equations. Econometrica 1962; 30: 54-78.
    • (1962) Econometrica , vol.30 , pp. 54-78
    • Zellner, A.1    Theil, H.2
  • 71
    • 84890663370 scopus 로고    scopus 로고
    • Princeton, NJ: Princeton University Press
    • Hayashi F,. Econometrics, Princeton, NJ: Princeton University Press, 2000.
    • (2000) Econometrics
    • Hayashi, F.1
  • 72
    • 0347354941 scopus 로고    scopus 로고
    • Bayesian and classical approaches to instrumental variable regression
    • Kleibergen F, Zivot E,. Bayesian and classical approaches to instrumental variable regression. J Econometr 2003; 114: 29-72.
    • (2003) J Econometr , vol.114 , pp. 29-72
    • Kleibergen, F.1    Zivot, E.2
  • 73
    • 84863411310 scopus 로고    scopus 로고
    • On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies
    • Jones E, Thompson J, Didelez V, et al. On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies. Stat Med 2012; 31: 1483-1501.
    • (2012) Stat Med , vol.31 , pp. 1483-1501
    • Jones, E.1    Thompson, J.2    Didelez, V.3
  • 75
    • 0000782256 scopus 로고
    • The bias and moment matrix of the general k-class estimators of the parameters in simultaneous equations
    • Nagar A,. The bias and moment matrix of the general k-class estimators of the parameters in simultaneous equations. Econometrica 1959; 27: 575-595.
    • (1959) Econometrica , vol.27 , pp. 575-595
    • Nagar, A.1
  • 77
    • 0000665227 scopus 로고
    • Some properties of a modification of the limited information estimator
    • Fuller WA,. Some properties of a modification of the limited information estimator. Econometrica 1977; 45: 939-953.
    • (1977) Econometrica , vol.45 , pp. 939-953
    • Fuller, W.A.1
  • 79
    • 42149190098 scopus 로고    scopus 로고
    • Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research
    • Johnston K, Gustafson P, Levy A, et al. Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat Med 2008; 27: 1539-1556.
    • (2008) Stat Med , vol.27 , pp. 1539-1556
    • Johnston, K.1    Gustafson, P.2    Levy, A.3
  • 81
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen LP,. Large sample properties of generalized method of moments estimators. Econometrica 1982; 50: 1029-1054.
    • (1982) Econometrica , vol.50 , pp. 1029-1054
    • Hansen, L.P.1
  • 82
    • 0030545862 scopus 로고    scopus 로고
    • Finite-sample properties of some alternative GMM estimators
    • Hansen LP, Heaton J, Yaron A,. Finite-sample properties of some alternative GMM estimators. J Business Econ Stat 1996; 14: 262-280.
    • (1996) J Business Econ Stat , vol.14 , pp. 262-280
    • Hansen, L.P.1    Heaton, J.2    Yaron, A.3
  • 83
    • 84920735955 scopus 로고    scopus 로고
    • The many weak instrument problem and Mendelian randomization
    • Davies N, von Hinke Kessler Scholder S, Farbmacher H, et al. The many weak instrument problem and Mendelian randomization. Stat Med 2015; 34: 454-468.
    • (2015) Stat Med , vol.34 , pp. 454-468
    • Davies, N.1    Von Hinke Kessler Scholder, S.2    Farbmacher, H.3
  • 84
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period-Application to control of the healthy worker survivor effect
    • Robins J,. A new approach to causal inference in mortality studies with a sustained exposure period-Application to control of the healthy worker survivor effect. Math Model 1986; 7: 1393-1512.
    • (1986) Math Model , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 85
    • 40949150634 scopus 로고    scopus 로고
    • Estimating effects from randomized trials with discontinuations: The need for intent-to-treat design and G-estimation
    • Greenland S, Lanes S, Jara M,. Estimating effects from randomized trials with discontinuations: the need for intent-to-treat design and G-estimation. Clin Trial 2008; 5: 5-13.
    • (2008) Clin Trial , vol.5 , pp. 5-13
    • Greenland, S.1    Lanes, S.2    Jara, M.3
  • 86
    • 84972969037 scopus 로고
    • Correcting for non-compliance in randomized trials using structural nested mean models
    • Robins JM,. Correcting for non-compliance in randomized trials using structural nested mean models. Commun Stat-Theor Meth 1994; 23: 2379-2412.
    • (1994) Commun Stat-Theor Meth , vol.23 , pp. 2379-2412
    • Robins, J.M.1
  • 87
    • 0033452904 scopus 로고    scopus 로고
    • Practical properties of some structural mean analyses of the effect of compliance in randomized trials
    • Fischer-Lapp K, Goetghebeur E,. Practical properties of some structural mean analyses of the effect of compliance in randomized trials. Control Clin Trial 1999; 20: 531-546.
    • (1999) Control Clin Trial , vol.20 , pp. 531-546
    • Fischer-Lapp, K.1    Goetghebeur, E.2
  • 88
    • 24944584791 scopus 로고    scopus 로고
    • Estimating treatment effects from randomized clinical trials with noncompliance and loss to follow-up: The role of instrumental variable methods
    • Dunn G, Maracy M, Tomenson B,. Estimating treatment effects from randomized clinical trials with noncompliance and loss to follow-up: the role of instrumental variable methods. Stat Meth Med Res 2005; 14: 369-395.
    • (2005) Stat Meth Med Res , vol.14 , pp. 369-395
    • Dunn, G.1    Maracy, M.2    Tomenson, B.3
  • 90
    • 0242635657 scopus 로고    scopus 로고
    • Causal inference with generalized structural mean models
    • Vansteelandt S, Goetghebeur E,. Causal inference with generalized structural mean models. J R Stat Soc Ser B 2003; 65: 817-835.
    • (2003) J R Stat Soc ser B , vol.65 , pp. 817-835
    • Vansteelandt, S.1    Goetghebeur, E.2
  • 93
    • 84904015210 scopus 로고    scopus 로고
    • Lack of identification in semi-parametric instrumental variable models with binary outcomes
    • Burgess S, Granell R, Palmer TM, et al. Lack of identification in semi-parametric instrumental variable models with binary outcomes. Am J Epidemiol 2014; 180: 111-119.
    • (2014) Am J Epidemiol , vol.180 , pp. 111-119
    • Burgess, S.1    Granell, R.2    Palmer, T.M.3
  • 94
    • 43749107899 scopus 로고    scopus 로고
    • Enhanced routines for instrumental variables/generalized method of moments estimation and testing
    • Baum CF, Schaffer ME, Stillman S,. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata J 2007; 7: 465-506.
    • (2007) Stata J , vol.7 , pp. 465-506
    • Baum, C.F.1    Schaffer, M.E.2    Stillman, S.3
  • 95
    • 0036790491 scopus 로고    scopus 로고
    • A survey of weak instruments and weak identification in generalized method of moments
    • Stock J, Wright J, Yogo M,. A survey of weak instruments and weak identification in generalized method of moments. J Business Econ Stat 2002; 20: 518-529.
    • (2002) J Business Econ Stat , vol.20 , pp. 518-529
    • Stock, J.1    Wright, J.2    Yogo, M.3
  • 96
    • 84871768280 scopus 로고
    • Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak
    • Bound J, Jaeger D, Baker R,. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J Am Stat Assoc 1995; 90: 443-450.
    • (1995) J Am Stat Assoc , vol.90 , pp. 443-450
    • Bound, J.1    Jaeger, D.2    Baker, R.3
  • 97
    • 0346307687 scopus 로고    scopus 로고
    • Instrumental variables regression with weak instruments
    • Staiger D, Stock J,. Instrumental variables regression with weak instruments. Econometrica 1997; 65: 557-586.
    • (1997) Econometrica , vol.65 , pp. 557-586
    • Staiger, D.1    Stock, J.2
  • 98
    • 0000881864 scopus 로고
    • Alternative approximations to the distributions of instrumental variable estimators
    • Bekker P,. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 1994; 62: 657-681.
    • (1994) Econometrica , vol.62 , pp. 657-681
    • Bekker, P.1
  • 100
    • 79961177302 scopus 로고    scopus 로고
    • Avoiding bias from weak instruments in Mendelian randomization studies
    • (crp Chd Genetics Collaboration) C.
    • Burgess S, Thompson SG, CCGC (CRP CHD Genetics Collaboration),. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011; 40: 755-764.
    • (2011) Int J Epidemiol , vol.40 , pp. 755-764
    • Burgess, S.1    Thompson, S.G.2
  • 101
    • 54949119165 scopus 로고    scopus 로고
    • War and wages: The strength of instrumental variables and their sensitivity to unobserved biases
    • Small DS, Rosenbaum PR,. War and wages: the strength of instrumental variables and their sensitivity to unobserved biases. J Am Stat Assoc 2008; 103: 924-933.
    • (2008) J Am Stat Assoc , vol.103 , pp. 924-933
    • Small, D.S.1    Rosenbaum, P.R.2
  • 102
    • 84884736257 scopus 로고    scopus 로고
    • Use of allele scores as instrumental variables for Mendelian randomization
    • Burgess S, Thompson S,. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 2013; 42: 1134-1144.
    • (2013) Int J Epidemiol , vol.42 , pp. 1134-1144
    • Burgess, S.1    Thompson, S.2
  • 104
    • 84936758183 scopus 로고    scopus 로고
    • Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects
    • Burgess S, Thompson S,. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 2015; 181: 251-260.
    • (2015) Am J Epidemiol , vol.181 , pp. 251-260
    • Burgess, S.1    Thompson, S.2
  • 106
    • 79951518399 scopus 로고    scopus 로고
    • Applied nonparametric instrumental variables estimation
    • Horowitz JL,. Applied nonparametric instrumental variables estimation. Econometrica 2011; 79: 347-394.
    • (2011) Econometrica , vol.79 , pp. 347-394
    • Horowitz, J.L.1
  • 107
    • 0142007871 scopus 로고    scopus 로고
    • Instrumental variable estimation of nonparametric models
    • Newey WK, Powell JL,. Instrumental variable estimation of nonparametric models. Econometrica 2003; 71: 1565-1578.
    • (2003) Econometrica , vol.71 , pp. 1565-1578
    • Newey, W.K.1    Powell, J.L.2
  • 108
    • 84922357503 scopus 로고    scopus 로고
    • Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: Application to alcohol and cardiovascular traits
    • Silverwood RJ, Holmes MV, Dale CE, et al. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits. Int J Epidemiol 2014; 43: 1781-1790.
    • (2014) Int J Epidemiol , vol.43 , pp. 1781-1790
    • Silverwood, R.J.1    Holmes, M.V.2    Dale, C.E.3
  • 109
    • 84926955922 scopus 로고    scopus 로고
    • Endogeneity in nonparametric and semiparametric regression models
    • Cambridge, UK: Cambridge University Press, 8th World Congress of the Econometric Society
    • Blundell R, Powell J,. Endogeneity in nonparametric and semiparametric regression models. Advances in economics and econometrics: theory and applications, Cambridge, UK: Cambridge University Press, 2005, pp. 312-357. 8th World Congress of the Econometric Society.
    • (2005) Advances in Economics and Econometrics: Theory and Applications , pp. 312-357
    • Blundell, R.1    Powell, J.2
  • 110
    • 84927760345 scopus 로고    scopus 로고
    • Commentary: Interpretation and sensitivity analysis for the localized average causal effect curve
    • Small DS,. Commentary: Interpretation and sensitivity analysis for the localized average causal effect curve. Epidemiology 2014; 25: 886-888.
    • (2014) Epidemiology , vol.25 , pp. 886-888
    • Small, D.S.1
  • 111
    • 77952717253 scopus 로고    scopus 로고
    • Illustrating bias due to conditioning on a collider
    • Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol 2010; 39: 417-420.
    • (2010) Int J Epidemiol , vol.39 , pp. 417-420
    • Cole, S.R.1    Platt, R.W.2    Schisterman, E.F.3
  • 112
    • 84860487671 scopus 로고    scopus 로고
    • Chapter 15: Instrumental variables estimation and two stage least squares
    • Nashville, TN: South-Western
    • Wooldridge JM,. Chapter 15: Instrumental variables estimation and two stage least squares. In: Introductory econometrics: a modern approach, Nashville, TN: South-Western, 2009, pp. 506-545.
    • (2009) Introductory Econometrics: A Modern Approach , pp. 506-545
    • Wooldridge, J.M.1
  • 113
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet 2006; 38: 904-909.
    • (2006) Nature Genet , vol.38 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3
  • 114
    • 0001755034 scopus 로고
    • The estimation of economic relationships using instrumental variables
    • Sargan J,. The estimation of economic relationships using instrumental variables. Econometrica 1958; 26: 393-415.
    • (1958) Econometrica , vol.26 , pp. 393-415
    • Sargan, J.1
  • 115
    • 33746892246 scopus 로고    scopus 로고
    • Instrumental variables methods in experimental criminological research: What, why and how
    • Angrist JD,. Instrumental variables methods in experimental criminological research: what, why and how. J Exp Criminol 2006; 2: 23-44.
    • (2006) J Exp Criminol , vol.2 , pp. 23-44
    • Angrist, J.D.1
  • 116
    • 84907828123 scopus 로고    scopus 로고
    • Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions
    • Burgess S, Freitag D, Khan H, et al. Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions. PLoS One 2014; 9: e108891.
    • (2014) PLoS One , vol.9 , pp. e108891
    • Burgess, S.1    Freitag, D.2    Khan, H.3
  • 117
    • 47249137081 scopus 로고    scopus 로고
    • Mendelian randomization" equals instrumental variable analysis with genetic instruments
    • Wehby G, Ohsfeldt R, Murray J,. "Mendelian randomization" equals instrumental variable analysis with genetic instruments. Stat Med 2008; 27: 2745-2749.
    • (2008) Stat Med , vol.27 , pp. 2745-2749
    • Wehby, G.1    Ohsfeldt, R.2    Murray, J.3
  • 118
    • 85066989975 scopus 로고    scopus 로고
    • Instrumental variables and GMM: Estimation and testing
    • Baum C, Schaffer M, Stillman S,. Instrumental variables and GMM: estimation and testing. Stata J 2003; 3: 1-31.
    • (2003) Stata J , vol.3 , pp. 1-31
    • Baum, C.1    Schaffer, M.2    Stillman, S.3
  • 119
    • 35348851021 scopus 로고    scopus 로고
    • Sensitivity analysis for instrumental variables regression with overidentifying restrictions
    • Small DS,. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J Am Stat Assoc 2007; 102: 1049-1058.
    • (2007) J Am Stat Assoc , vol.102 , pp. 1049-1058
    • Small, D.S.1
  • 120
    • 33747071747 scopus 로고    scopus 로고
    • Estimation of bias in nongenetic observational studies using "mendelian triangulation
    • Bautista LE, Smeeth L, Hingorani AD, et al. Estimation of bias in nongenetic observational studies using "Mendelian triangulation". Ann Epidemiol 2006; 16: 675-680.
    • (2006) Ann Epidemiol , vol.16 , pp. 675-680
    • Bautista, L.E.1    Smeeth, L.2    Hingorani, A.D.3
  • 121
    • 38949127024 scopus 로고    scopus 로고
    • Mendelian randomization: Can genetic epidemiology help redress the failures of observational epidemiology?
    • Ebrahim S, Davey Smith G,. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Human Genet 2008; 123: 15-33.
    • (2008) Human Genet , vol.123 , pp. 15-33
    • Ebrahim, S.1    Davey Smith, G.2
  • 122
    • 85031674382 scopus 로고    scopus 로고
    • Chapter 5: Multiple regression analysis-OLS asymptotics
    • Nashville, TN: South-Western
    • Wooldridge JM,. Chapter 5: Multiple regression analysis-OLS asymptotics. In: Introductory econometrics: a modern approach, Nashville, TN: South-Western, 2009, pp. 167-183.
    • (2009) Introductory Econometrics: A Modern Approach , pp. 167-183
    • Wooldridge, J.M.1
  • 123
    • 84884793216 scopus 로고    scopus 로고
    • Power and sample size calculations for Mendelian randomization studies
    • Freeman G, Cowling B, Schooling M,. Power and sample size calculations for Mendelian randomization studies. Int J Epidemiol 2013; 42: 1157-1163.
    • (2013) Int J Epidemiol , vol.42 , pp. 1157-1163
    • Freeman, G.1    Cowling, B.2    Schooling, M.3
  • 124
    • 84886426512 scopus 로고    scopus 로고
    • Calculating statistical power in Mendelian randomization studies
    • Brion MJ, Shakhbazov K, Visscher P,. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 2013; 42: 1497-1501.
    • (2013) Int J Epidemiol , vol.42 , pp. 1497-1501
    • Brion, M.J.1    Shakhbazov, K.2    Visscher, P.3
  • 125
    • 84902684375 scopus 로고    scopus 로고
    • Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome
    • Burgess S,. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol 2014; 43: 922-929.
    • (2014) Int J Epidemiol , vol.43 , pp. 922-929
    • Burgess, S.1
  • 126
    • 84885840876 scopus 로고    scopus 로고
    • Mendelian randomization analysis with multiple genetic variants using summarized data
    • Burgess S, Butterworth A, Thompson SG,. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013; 37: 658-665.
    • (2013) Genet Epidemiol , vol.37 , pp. 658-665
    • Burgess, S.1    Butterworth, A.2    Thompson, S.G.3
  • 127
    • 85031700405 scopus 로고    scopus 로고
    • Johnson T. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Queen Mary University of London, (2011, accessed 24 July 2015)
    • Johnson T. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Queen Mary University of London, http://webspace.qmul.ac.uk/tjohnson/gtx/outline2.pdf (2011, accessed 24 July 2015).
  • 128
    • 84884973036 scopus 로고    scopus 로고
    • Efficient design for Mendelian randomization studies: Subsample and two-sample instrumental variable estimators
    • Pierce B, Burgess S,. Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators. Am J Epidemiol 2013; 178: 1177-1184.
    • (2013) Am J Epidemiol , vol.178 , pp. 1177-1184
    • Pierce, B.1    Burgess, S.2
  • 129
    • 77955148591 scopus 로고    scopus 로고
    • Two-sample instrumental variables estimators
    • Inoue A, Solon G,. Two-sample instrumental variables estimators. Rev Econ Stat 2010; 92: 557-561.
    • (2010) Rev Econ Stat , vol.92 , pp. 557-561
    • Inoue, A.1    Solon, G.2
  • 130
    • 38349068317 scopus 로고
    • The effect of age at school entry on educational attainment: An application of instrumental variables with moments from two samples
    • Angrist JD, Krueger AB,. The effect of age at school entry on educational attainment: an application of instrumental variables with moments from two samples. J Am Stat Assoc 1992; 87: 328-336.
    • (1992) J Am Stat Assoc , vol.87 , pp. 328-336
    • Angrist, J.D.1    Krueger, A.B.2
  • 131
    • 79953204259 scopus 로고    scopus 로고
    • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
    • Schunkert H, König I, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genet 2011; 43: 333-338.
    • (2011) Nature Genet , vol.43 , pp. 333-338
    • Schunkert, H.1    König, I.2    Kathiresan, S.3
  • 132
    • 84868337361 scopus 로고    scopus 로고
    • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
    • Morris A, Voight B, Teslovich T, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genet 2012; 44: 981-990.
    • (2012) Nature Genet , vol.44 , pp. 981-990
    • Morris, A.1    Voight, B.2    Teslovich, T.3
  • 133
    • 84943354221 scopus 로고    scopus 로고
    • Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors
    • 2015; 30: 543-552
    • Burgess S, Scott R, Timpson N, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015; 30: 543-552.
    • Eur J Epidemiol
    • Burgess, S.1    Scott, R.2    Timpson, N.3
  • 135
    • 84958687567 scopus 로고    scopus 로고
    • Methods for meta-Analysis of individual participant data from Mendelian randomization studies with binary outcomes
    • (crp Chd Genetics Collaboration) C.
    • Burgess S, Thompson SG, CCGC (CRP CHD Genetics Collaboration),. Methods for meta-Analysis of individual participant data from Mendelian randomization studies with binary outcomes. Stat Meth Med Res. 2016; 25: 272-293.
    • (2016) Stat Meth Med Res , vol.25 , pp. 272-293
    • Burgess, S.1    Thompson, S.G.2
  • 136
    • 55549084836 scopus 로고    scopus 로고
    • Detecting invalid instruments using L1-GMM
    • Han C,. Detecting invalid instruments using L1-GMM. Econ Lett 2008; 101: 285-287.
    • (2008) Econ Lett , vol.101 , pp. 285-287
    • Han, C.1
  • 137
    • 85031668360 scopus 로고    scopus 로고
    • Bowden J. Median based estimation for Mendelian randomization with multiple instruments. MRC Biostatistics Unit, (2015, accessed 24 July 2015)
    • Bowden J. Median based estimation for Mendelian randomization with multiple instruments. MRC Biostatistics Unit, http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/SimpleWeightedMedian.pdf (2015, accessed 24 July 2015).
  • 138
    • 84946954072 scopus 로고    scopus 로고
    • Instrumental variables estimation with some invalid instruments, and its application to Mendelian randomisation
    • available online before print
    • Kang H, Zhang A, Cai T, et al. Instrumental variables estimation with some invalid instruments, and its application to Mendelian randomisation. J Am Stat Assoc 2015. available online before print.
    • (2015) J Am Stat Assoc
    • Kang, H.1    Zhang, A.2    Cai, T.3
  • 141
    • 84936755918 scopus 로고    scopus 로고
    • Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression
    • Bowden J, Davey Smith G, Burgess S,. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44: 512-525.
    • (2015) Int J Epidemiol , vol.44 , pp. 512-525
    • Bowden, J.1    Davey Smith, G.2    Burgess, S.3
  • 142
    • 0030922816 scopus 로고    scopus 로고
    • Bias in meta-Analysis detected by a simple, graphical test
    • Egger M, Smith GD, Schneider M, et al. Bias in meta-Analysis detected by a simple, graphical test. Br Med J 1997; 315: 629-634.
    • (1997) Br Med J , vol.315 , pp. 629-634
    • Egger, M.1    Smith, G.D.2    Schneider, M.3
  • 143
    • 78650636780 scopus 로고    scopus 로고
    • Treatment-effect estimates adjusted for small-study effects via a limit meta-Analysis
    • Rücker G, Schwarzer G, Carpenter JR, et al. Treatment-effect estimates adjusted for small-study effects via a limit meta-Analysis. Biostatistics 2011; 12: 122-142.
    • (2011) Biostatistics , vol.12 , pp. 122-142
    • Rücker, G.1    Schwarzer, G.2    Carpenter, J.R.3
  • 144
    • 84945315974 scopus 로고    scopus 로고
    • Identification and inference with many invalid instruments
    • 2015; 33: 474-484
    • Kolesár M, Chetty R, Friedman J, et al. Identification and inference with many invalid instruments. J Business Econ Stat. 2015; 33: 474-484.
    • J Business Econ Stat
    • Kolesár, M.1    Chetty, R.2    Friedman, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.