메뉴 건너뛰기




Volumn 180, Issue 1, 2014, Pages 111-119

Lack of identification in semiparametric instrumental variable models with binary outcomes

Author keywords

Avon Longitudinal Study of Parents and Children; generalized method of moments; identifiability; identification; instrumental variables; semiparametric methods; structural mean model; weak instruments

Indexed keywords

BODY MASS; DATA SET; EPIDEMIOLOGY; ERROR ANALYSIS; ESTIMATION METHOD; IDENTIFICATION METHOD; INSTRUMENTATION; NUMERICAL MODEL; OPTIMIZATION; PARAMETERIZATION; RISK ASSESSMENT;

EID: 84904015210     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwu107     Document Type: Article
Times cited : (17)

References (36)
  • 2
    • 1342308646 scopus 로고    scopus 로고
    • Identification, weak instruments, and statistical inference in econometrics
    • Dufour JM. Identification, weak instruments, and statistical inference in econometrics. Can J Econ. 2003;36(4):767-808.
    • (2003) Can J Econ. , vol.36 , Issue.4 , pp. 767-808
    • Dufour, J.M.1
  • 3
    • 0036790491 scopus 로고    scopus 로고
    • A survey of weak instruments and weak identification in generalized method of moments
    • Stock JH, Wright JH, Yogo M. A survey of weak instruments and weak identification in generalized method of moments. J Bus Econ Stat. 2002;20(4):518-529.
    • (2002) J Bus Econ Stat. , vol.20 , Issue.4 , pp. 518-529
    • Stock, J.H.1    Wright, J.H.2    Yogo, M.3
  • 4
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996; 91(434):444-455.
    • (1996) J Am Stat Assoc. , vol.91 , Issue.434 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 5
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29(4):722-729.
    • (2000) Int J Epidemiol , vol.29 , Issue.4 , pp. 722-729
    • Greenland, S.1
  • 6
    • 33646809746 scopus 로고    scopus 로고
    • Instrumental variables: Application and limitations
    • Martens EP, Pestman WR, de Boer A, et al. Instrumental variables: application and limitations. Epidemiology. 2006; 17(3):260-267.
    • (2006) Epidemiology , vol.17 , Issue.3 , pp. 260-267
    • Martens, E.P.1    Pestman, W.R.2    De Boer, A.3
  • 7
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomization as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res. 2007;16(4):309-330.
    • (2007) Stat Methods Med Res. , vol.16 , Issue.4 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 8
    • 77957778209 scopus 로고    scopus 로고
    • Assumptions of IV methods for observational epidemiology
    • Didelez V, Meng S, Sheehan NA. Assumptions of IV methods for observational epidemiology. Stat Sci. 2010;25(1): 22-40.
    • (2010) Stat Sci. , vol.25 , Issue.1 , pp. 22-40
    • Didelez, V.1    Meng, S.2    Sheehan, N.A.3
  • 9
    • 0000878807 scopus 로고
    • The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one
    • Nelson CR, Startz R. The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one. J Bus. 1990;63(1):125-140.
    • (1990) J Bus. , vol.63 , Issue.1 , pp. 125-140
    • Nelson, C.R.1    Startz, R.2
  • 10
    • 0346307687 scopus 로고    scopus 로고
    • Instrumental variables regression with weak instruments
    • Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica. 1997;65(3):557-586.
    • (1997) Econometrica , vol.65 , Issue.3 , pp. 557-586
    • Staiger, D.1    Stock, J.H.2
  • 11
    • 1342320831 scopus 로고    scopus 로고
    • Testing for weak instruments in linear IV regression
    • Stock J, Yogo M. Testing for weak instruments in linear IV regression. SSRN eLibrary. 2002;11:T0284.
    • (2002) SSRN ELibrary , vol.11
    • Stock, J.1    Yogo, M.2
  • 12
    • 0037322022 scopus 로고    scopus 로고
    • Mendelian randomization: Can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Davey Smith G, Ebrahim S. 'Mendelian randomization': Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003; 32(1):1-22.
    • (2003) Int J Epidemiol , vol.32 , Issue.1 , pp. 1-22
    • Davey Smith, G.1    Ebrahim, S.2
  • 13
    • 40849083720 scopus 로고    scopus 로고
    • Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology
    • Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8): 1133-1163.
    • (2008) Stat Med. , vol.27 , Issue.8 , pp. 1133-1163
    • Lawlor, D.A.1    Harbord, R.M.2    Sterne, J.A.3
  • 14
    • 50949084462 scopus 로고    scopus 로고
    • Mendelian randomisation and causal inference in observational epidemiology
    • Sheehan NA, Didelez V, Burton PR, et al. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 2008;5(8):e177.
    • (2008) PLoS Med. , vol.5 , Issue.8
    • Sheehan, N.A.1    Didelez, V.2    Burton, P.R.3
  • 15
    • 63249089543 scopus 로고    scopus 로고
    • Mendelian randomization: How it can- and cannot-help confirm causal relations between nutrition and cancer
    • Schatzkin A, Abnet CC, Cross AJ, et al. Mendelian randomization: How it can- and cannot-help confirm causal relations between nutrition and cancer. Cancer Prev Res (Phila). 2009;2(2):104-113.
    • (2009) Cancer Prev Res (Phila) , vol.2 , Issue.2 , pp. 104-113
    • Schatzkin, A.1    Abnet, C.C.2    Cross, A.J.3
  • 16
    • 24944584791 scopus 로고    scopus 로고
    • Estimating treatment effects from randomized clinical trials with noncompliance and loss to follow-up: The role of instrumental variable methods
    • Dunn G, Maracy M, Tomenson B. Estimating treatment effects from randomized clinical trials with noncompliance and loss to follow-up: the role of instrumental variable methods. Stat Methods Med Res. 2005;14(4):369-395.
    • (2005) Stat Methods Med Res. , vol.14 , Issue.4 , pp. 369-395
    • Dunn, G.1    Maracy, M.2    Tomenson, B.3
  • 17
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen LP. Large sample properties of generalized method of moments estimators. Econometrica. 1982;50(4):1029-1054.
    • (1982) Econometrica , vol.50 , Issue.4 , pp. 1029-1054
    • Hansen, L.P.1
  • 18
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550-560.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 19
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: An epidemiologist's dream?
    • Hernán MA, Robins JM. Instruments for causal inference: An epidemiologist's dream? Epidemiology. 2006;17(4):360-372.
    • (2006) Epidemiology , vol.17 , Issue.4 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 20
    • 79958821064 scopus 로고    scopus 로고
    • Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses
    • Palmer TM, Sterne JA, Harbord RM, et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol. 2011; 173(12):1392-1403.
    • (2011) Am J Epidemiol , vol.173 , Issue.12 , pp. 1392-1403
    • Palmer, T.M.1    Sterne, J.A.2    Harbord, R.M.3
  • 21
    • 84871988173 scopus 로고    scopus 로고
    • Instrumental variable estimators for binary outcomes
    • Clarke PS, Windmeijer F. Instrumental variable estimators for binary outcomes. J Am Stat Assoc. 2012;107(500):1638-1652.
    • (2012) J Am Stat Assoc. , vol.107 , Issue.500 , pp. 1638-1652
    • Clarke, P.S.1    Windmeijer, F.2
  • 22
    • 59649102811 scopus 로고    scopus 로고
    • Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes
    • Rassen JA, Schneeweiss S, Glynn RJ, et al. Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes. Am J Epidemiol. 2009;169(3): 273-284.
    • (2009) Am J Epidemiol , vol.169 , Issue.3 , pp. 273-284
    • Rassen, J.A.1    Schneeweiss, S.2    Glynn, R.J.3
  • 23
    • 42149190098 scopus 로고    scopus 로고
    • Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research
    • Johnston KM, Gustafson P, Levy AR, et al. Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat Med. 2008;27(9):1539-1556.
    • (2008) Stat Med. , vol.27 , Issue.9 , pp. 1539-1556
    • Johnston, K.M.1    Gustafson, P.2    Levy, A.R.3
  • 24
    • 85066989975 scopus 로고    scopus 로고
    • Instrumental variables and GMM: Estimation and testing
    • Baum C, Schaffer M, Stillman S. Instrumental variables and GMM: estimation and testing. Stata J. 2003;3(1):1-31.
    • (2003) Stata J. , vol.3 , Issue.1 , pp. 1-31
    • Baum, C.1    Schaffer, M.2    Stillman, S.3
  • 25
    • 79955576466 scopus 로고    scopus 로고
    • Bias in causal estimates from Mendelian randomization studies with weak instruments
    • Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med. 2011;30(11):1312-1323.
    • (2011) Stat Med. , vol.30 , Issue.11 , pp. 1312-1323
    • Burgess, S.1    Thompson, S.G.2
  • 26
    • 84871768280 scopus 로고
    • Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak
    • Bound J, Jaeger D, Baker R. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J Am Stat Assoc. 1995;90(430):443-450.
    • (1995) J Am Stat Assoc. , vol.90 , Issue.430 , pp. 443-450
    • Bound, J.1    Jaeger, D.2    Baker, R.3
  • 27
    • 79961177302 scopus 로고    scopus 로고
    • Avoiding bias from weak instruments in Mendelian randomization studies
    • CRP CHD Genetics Collaboration
    • Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755-764.
    • (2011) Int J Epidemiol , vol.40 , Issue.3 , pp. 755-764
    • Burgess, S.1    Thompson, S.G.2
  • 28
    • 84862638857 scopus 로고    scopus 로고
    • Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes
    • Burgess S, Thompson SG. Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Stat Med. 2012;31(15): 1582-1600.
    • (2012) Stat Med. , vol.31 , Issue.15 , pp. 1582-1600
    • Burgess, S.1    Thompson, S.G.2
  • 29
    • 84904019451 scopus 로고    scopus 로고
    • Data dictionary. Published September 21, Updated June 10, 2013. Accessed June 19, 2013
    • Data dictionary. Avon Longitudinal Study of Parents and Children. http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. Published September 21, 2007. Updated June 10, 2013. Accessed June 19, 2013.
    • (2007) Avon Longitudinal Study of Parents and Children
  • 30
    • 84862002169 scopus 로고    scopus 로고
    • Mendelian randomisation study of childhood BMI and early menarche
    • Mumby HS, Elks CE, Li S, et al. Mendelian randomisation study of childhood BMI and early menarche. J Obes. 2011; 2011:180729.
    • (2011) J Obes. , vol.2011 , pp. 180729
    • Mumby, H.S.1    Elks, C.E.2    Li, S.3
  • 31
    • 51649128621 scopus 로고    scopus 로고
    • Obesity associated genetic variation in FTO is associated with diminished satiety
    • Wardle J, Carnell S, Haworth CM, et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640-3643.
    • (2008) J Clin Endocrinol Metab. , vol.93 , Issue.9 , pp. 3640-3643
    • Wardle, J.1    Carnell, S.2    Haworth, C.M.3
  • 32
    • 84884736257 scopus 로고    scopus 로고
    • Use of allele scores as instrumental variables for Mendelian randomization
    • Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol. 2013; 42(4):1134-1144.
    • (2013) Int J Epidemiol , vol.42 , Issue.4 , pp. 1134-1144
    • Burgess, S.1    Thompson, S.G.2
  • 33
    • 78049337953 scopus 로고    scopus 로고
    • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
    • Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937-948.
    • (2010) Nat Genet. , vol.42 , Issue.11 , pp. 937-948
    • Speliotes, E.K.1    Willer, C.J.2    Berndt, S.I.3
  • 34
    • 82655179692 scopus 로고    scopus 로고
    • On instrumental variables estimation of causal odds ratios
    • Vansteelandt S, Bowden J, Babanezhad M, et al. On instrumental variables estimation of causal odds ratios. Stat Sci. 2011;26(3):403-422.
    • (2011) Stat Sci. , vol.26 , Issue.3 , pp. 403-422
    • Vansteelandt, S.1    Bowden, J.2    Babanezhad, M.3
  • 35
    • 84898057093 scopus 로고    scopus 로고
    • Using structural-nested models to estimate the effect of cluster-level adherence on individual-level outcomes with a three-armed cluster-randomized trial
    • Brumback BA, He Z, Prasad M, et al. Using structural-nested models to estimate the effect of cluster-level adherence on individual-level outcomes with a three-armed cluster-randomized trial. Stat Med. 2014;33(9):1490-1502.
    • (2014) Stat Med. , vol.33 , Issue.9 , pp. 1490-1502
    • Brumback, B.A.1    He, Z.2    Prasad, M.3
  • 36
    • 84876258577 scopus 로고    scopus 로고
    • Commentary: How to report instrumental variable analyses (suggestions welcome)
    • Swanson SA, Hernán MA. Commentary: How to report instrumental variable analyses (suggestions welcome). Epidemiology. 2013;24(3):370-374.
    • (2013) Epidemiology , vol.24 , Issue.3 , pp. 370-374
    • Swanson, S.A.1    Hernán, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.