메뉴 건너뛰기




Volumn 42, Issue 4, 2013, Pages 1134-1144

Use of allele scores as instrumental variables for Mendelian randomization

Author keywords

Allele scores; Genetic risk scores; Instrumental variables; Mendelian randomization; Weak instruments

Indexed keywords

ALLELE; DATA SET; GENETIC ANALYSIS; GENETIC VARIATION; HERITABILITY; RISK FACTOR;

EID: 84884736257     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dyt093     Document Type: Article
Times cited : (355)

References (39)
  • 1
    • 78751517928 scopus 로고    scopus 로고
    • Association of a fasting glucose genetic risk score with subclinical atherosclerosis
    • Rasmussen-Torvik L, Li M, Kao W et al. Association of a fasting glucose genetic risk score with subclinical atherosclerosis. Diabetes 2011;60:331-35.
    • (2011) Diabetes , vol.60 , pp. 331-335
    • Rasmussen-Torvik, L.1    Li, M.2    Kao, W.3
  • 2
    • 80053907554 scopus 로고    scopus 로고
    • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
    • International Consortium for Blood Pressure Genome- Wide Association Studies.
    • International Consortium for Blood Pressure Genome- Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011;478:103-09.
    • (2011) Nature , vol.478 , pp. 103-109
  • 3
    • 84864845456 scopus 로고    scopus 로고
    • Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study
    • Voight B, Peloso G, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 2012;380:572-80.
    • (2012) Lancet , vol.380 , pp. 572-580
    • Voight, B.1    Peloso, G.2    Orho-Melander, M.3
  • 4
    • 0037322022 scopus 로고    scopus 로고
    • 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Davey Smith G, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?. Int J Epidemiol 2003;32:1-22.
    • (2003) Int J Epidemiol , vol.32 , pp. 1-22
    • Davey Smith, G.1    Ebrahim, S.2
  • 5
    • 40849083720 scopus 로고    scopus 로고
    • Mendelian randomization: using genes as instruments for making causal inferences in epidemiology
    • Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27:1133-63.
    • (2008) Stat Med , vol.27 , pp. 1133-1163
    • Lawlor, D.1    Harbord, R.2    Sterne, J.3    Timpson, N.4    Davey Smith, G.5
  • 6
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomization as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 2007;16:309-30.
    • (2007) Stat Methods Med Res , vol.16 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 7
    • 67049137261 scopus 로고    scopus 로고
    • Mendelian randomization: nature's randomized trial in the post-genome era
    • Thanassoulis G, O'Donnell C. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA 2009;301:2386-88.
    • (2009) JAMA , vol.301 , pp. 2386-2388
    • Thanassoulis, G.1    O'Donnell, C.2
  • 8
    • 50949084462 scopus 로고    scopus 로고
    • Mendelian randomisation and causal inference in observational epidemiology
    • Sheehan N, Didelez V, Burton P, Tobin M. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 2008;5:e177.
    • (2008) PLoS Med , vol.5
    • Sheehan, N.1    Didelez, V.2    Burton, P.3    Tobin, M.4
  • 9
    • 77957778209 scopus 로고    scopus 로고
    • Assumptions of IV methods for observational epidemiology
    • Didelez V, Meng S, Sheehan N. Assumptions of IV methods for observational epidemiology. Statist Sci 2010;25:22-40.
    • (2010) Statist Sci , vol.25 , pp. 22-40
    • Didelez, V.1    Meng, S.2    Sheehan, N.3
  • 10
    • 1942436221 scopus 로고    scopus 로고
    • Mendelian randomization: prospects, potentials, and limitations
    • Davey Smith G, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 2004;33:30-42.
    • (2004) Int J Epidemiol , vol.33 , pp. 30-42
    • Davey Smith, G.1    Ebrahim, S.2
  • 11
    • 38949127024 scopus 로고    scopus 로고
    • Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology?
    • Ebrahim S, Davey Smith G. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology?. Hum Genet 2008; 123:15-33.
    • (2008) Hum Genet , vol.123 , pp. 15-33
    • Ebrahim, S.1    Davey Smith, G.2
  • 12
    • 79951990503 scopus 로고    scopus 로고
    • Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data
    • CRP CHD Genetics Collaboration.
    • CRP CHD Genetics Collaboration. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ 2011;342:d548.
    • (2011) BMJ , vol.342
  • 13
    • 84859215358 scopus 로고    scopus 로고
    • The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis
    • The Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium.
    • The Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012;379:1214-24.
    • (2012) Lancet , vol.379 , pp. 1214-1224
  • 14
    • 79961185600 scopus 로고    scopus 로고
    • Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants
    • Pierce B, Ahsan H, VanderWeele T. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 2011; 40:740-52.
    • (2011) Int J Epidemiol , vol.40 , pp. 740-752
    • Pierce, B.1    Ahsan, H.2    VanderWeele, T.3
  • 15
    • 84861827079 scopus 로고    scopus 로고
    • Using multiple genetic variants as instrumental variables for modifiable risk factors
    • Palmer T, Lawlor D, Harbord R, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 2011;21:223-42.
    • (2011) Stat Methods Med Res , vol.21 , pp. 223-242
    • Palmer, T.1    Lawlor, D.2    Harbord, R.3
  • 16
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol 2000;29:722-29.
    • (2000) Int J Epidemiol , vol.29 , pp. 722-729
    • Greenland, S.1
  • 17
    • 61449255235 scopus 로고    scopus 로고
    • Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score: The CoLaus study
    • Lin X, Song K, Lim N, et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score: The CoLaus study. Diabetologia 2009;52:600-08.
    • (2009) Diabetologia , vol.52 , pp. 600-608
    • Lin, X.1    Song, K.2    Lim, N.3
  • 18
    • 77954140531 scopus 로고    scopus 로고
    • Common SNPs explain a large proportion of the heritability for human height
    • Yang J, Benyamin B, McEvoy B, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42:565-69.
    • (2010) Nat Genet , vol.42 , pp. 565-569
    • Yang, J.1    Benyamin, B.2    McEvoy, B.3
  • 19
    • 85066989975 scopus 로고    scopus 로고
    • Instrumental variables and GMM: Estimation and testing
    • Baum C, Schaffer M, Stillman S. Instrumental variables and GMM: Estimation and testing. Stata J 2003;3:1-31.
    • (2003) Stata J , vol.3 , pp. 1-31
    • Baum, C.1    Schaffer, M.2    Stillman, S.3
  • 20
    • 84890663370 scopus 로고    scopus 로고
    • Princeton, NJ: Princeton University Press
    • Hayashi F. Econometrics. Princeton, NJ: Princeton University Press, 2000.
    • (2000) Econometrics
    • Hayashi, F.1
  • 22
    • 33746386808 scopus 로고    scopus 로고
    • Teacher's corner: structural equation modeling with the Sem package in R
    • Fox J. Teacher's corner: structural equation modeling with the Sem package in R. Structural Equation Modeling: A Multidisciplinary Journal 2006;13:465-86.
    • (2006) Structural Equation Modeling: A Multidisciplinary Journal , vol.13 , pp. 465-486
    • Fox, J.1
  • 23
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team. Vienna, Austria: R Foundation for Statistical Computing (29 July 2013, date last accessed)
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2011. http://www.R-project.org (29 July 2013, date last accessed).
    • (2011) R: A Language and Environment for Statistical Computing
  • 24
    • 0000878807 scopus 로고
    • The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one
    • Nelson C, Startz R. The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one. Journal of Business 1990;63:125-40.
    • (1990) Journal of Business , vol.63 , pp. 125-140
    • Nelson, C.1    Startz, R.2
  • 25
    • 79955576466 scopus 로고    scopus 로고
    • Bias in causal estimates from Mendelian randomization studies with weak instruments
    • Burgess S, Thompson S. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med 2011;30:1312-23.
    • (2011) Stat Med , vol.30 , pp. 1312-1323
    • Burgess, S.1    Thompson, S.2
  • 26
    • 84862638857 scopus 로고    scopus 로고
    • Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes
    • Burgess S, Thompson S. Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Stat Med 2012;31:1582-600.
    • (2012) Stat Med , vol.31 , pp. 1582-1600
    • Burgess, S.1    Thompson, S.2
  • 27
    • 43749107899 scopus 로고    scopus 로고
    • Enhanced routines for instrumental variables/generalized method of moments estimation and testing
    • Baum C, Schaffer M, Stillman S. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata J 2007;7:465-506.
    • (2007) Stata J , vol.7 , pp. 465-506
    • Baum, C.1    Schaffer, M.2    Stillman, S.3
  • 28
    • 0346307687 scopus 로고    scopus 로고
    • Instrumental variables regression with weak instruments
    • Staiger D, Stock J. Instrumental variables regression with weak instruments. Econometrica 1997;65:557-586.
    • (1997) Econometrica , vol.65 , pp. 557-586
    • Staiger, D.1    Stock, J.2
  • 29
    • 79961177302 scopus 로고    scopus 로고
    • CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies
    • Burgess S, Thompson S, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011;40:755-64.
    • (2011) Int J Epidemiol , vol.40 , pp. 755-764
    • Burgess, S.1    Thompson, S.2
  • 30
    • 1342320831 scopus 로고    scopus 로고
    • Testing for weak instruments in linear IV regression
    • Stock J, Yogo M. Testing for weak instruments in linear IV regression. SSRN eLibrary 2002;11:T0284.
    • (2002) SSRN eLibrary , vol.11
    • Stock, J.1    Yogo, M.2
  • 32
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans
    • Cordell H. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002;11:2463-68.
    • (2002) Hum Mol Genet , vol.11 , pp. 2463-2468
    • Cordell, H.1
  • 33
    • 27744453963 scopus 로고    scopus 로고
    • Estimation with weak instruments: accuracy of higher-order bias and MSE approximations
    • Hahn J, Hausman J, Kuersteiner G. Estimation with weak instruments: accuracy of higher-order bias and MSE approximations. Econometrics J 2004;7:272-306.
    • (2004) Econometrics J , vol.7 , pp. 272-306
    • Hahn, J.1    Hausman, J.2    Kuersteiner, G.3
  • 34
    • 0000881864 scopus 로고
    • Alternative approximations to the distributions of instrumental variable estimators
    • Bekker PA. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 1994;62:657-81.
    • (1994) Econometrica , vol.62 , pp. 657-681
    • Bekker, P.A.1
  • 35
    • 0033479459 scopus 로고    scopus 로고
    • Jackknife instrumental variables estimation
    • Angrist J, Imbens G, Krueger A. Jackknife instrumental variables estimation. J Appl Econ 1999;14:57-67.
    • (1999) J Appl Econ , vol.14 , pp. 57-67
    • Angrist, J.1    Imbens, G.2    Krueger, A.3
  • 36
    • 79961186642 scopus 로고    scopus 로고
    • Random allocation in observational data: how small but robust effects could facilitate hypothesis- free causal inference
    • Davey Smith G. Random allocation in observational data: how small but robust effects could facilitate hypothesis- free causal inference. Epidemiology 2011;22: 460-63.
    • (2011) Epidemiology , vol.22 , pp. 460-463
    • Davey Smith, G.1
  • 37
    • 53349140946 scopus 로고    scopus 로고
    • Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses
    • Palmer T, Thompson J, Tobin M, Sheehan N, Burton P. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Int J Epidemiol 2008;37:1161-68.
    • (2008) Int J Epidemiol , vol.37 , pp. 1161-1168
    • Palmer, T.1    Thompson, J.2    Tobin, M.3    Sheehan, N.4    Burton, P.5
  • 38
    • 84898057789 scopus 로고    scopus 로고
    • Identifying the odds ratio estimated by a twostage instrumental variable analysis with a logistic regression model
    • doi: 101002/sim.5871
    • Burgess S. Identifying the odds ratio estimated by a twostage instrumental variable analysis with a logistic regression model. Stat Med 2013; doi:10.1002/sim.5871.
    • (2013) Stat Med
    • Burgess, S.1
  • 39
    • 80054932205 scopus 로고    scopus 로고
    • Missing data methods in Mendelian randomization studies with multiple instruments
    • Burgess S, Seaman S, Lawlor D, Casas J, Thompson S. Missing data methods in Mendelian randomization studies with multiple instruments. Am J Epidemiol 2011;174: 1069-76.
    • (2011) Am J Epidemiol , vol.174 , pp. 1069-1076
    • Burgess, S.1    Seaman, S.2    Lawlor, D.3    Casas, J.4    Thompson, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.