메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 370-374

Commentary: How to report instrumental variable analyses (suggestions welcome)

Author keywords

[No Author keywords available]

Indexed keywords

CYCLOOXYGENASE 2 INHIBITOR; NONSTEROID ANTIINFLAMMATORY AGENT;

EID: 84876258577     PISSN: 10443983     EISSN: 15315487     Source Type: Journal    
DOI: 10.1097/EDE.0b013e31828d0590     Document Type: Note
Times cited : (148)

References (31)
  • 1
    • 79955023419 scopus 로고    scopus 로고
    • Use of instrumental variable in prescription drug research with observational data: A systematic review
    • Chen Y, Briesacher BA. Use of instrumental variable in prescription drug research with observational data: a systematic review. J Clin Epidemiol. 2011;64:687-700.
    • (2011) J Clin Epidemiol. , vol.64 , pp. 687-700
    • Chen, Y.1    Briesacher, B.A.2
  • 2
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: An epidemiologist's dream?
    • Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream? Epidemiology. 2006;17:360-372.
    • (2006) Epidemiology. , vol.17 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 3
    • 0034529563 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:1102.
    • (2000) Int J Epidemiol. , vol.29 , pp. 1102
    • Greenland, S.1
  • 4
    • 77953519101 scopus 로고    scopus 로고
    • Instrumental variable methods in comparative safety and effectiveness research
    • Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepide-miol Drug Saf. 2010;19:537-554.
    • (2010) Pharmacoepide-miol Drug Saf. , vol.19 , pp. 537-554
    • Brookhart, M.A.1    Rassen, J.A.2    Schneeweiss, S.3
  • 5
    • 84876289716 scopus 로고    scopus 로고
    • CoX-2 selective nonsteroidal anti-infammatory drugs and risk of gastrointestinal tract complications and myocardial infarction: An instrumental variable analysis
    • Davies NM, Davey-Smith G, Windmeijer F, Martin RM. CoX-2 selective nonsteroidal anti-infammatory drugs and risk of gastrointestinal tract complications and myocardial infarction: an instrumental variable analysis. Epidemiology. 2013;24:352-362.
    • (2013) Epidemiology. , vol.24 , pp. 352-362
    • Davies, N.M.1    Davey-Smith, G.2    Windmeijer, F.3    Martin, R.M.4
  • 6
    • 84876295967 scopus 로고    scopus 로고
    • Issues in the reporting and conduct of instrumental variable studies: A systematic review
    • Davies NM, Davey-Smith G, Windmeijer F, Martin RM. Issues in the reporting and conduct of instrumental variable studies: a systematic review. Epidemiology. 2013;24:363-369.
    • (2013) Epidemiology. , vol.24 , pp. 363-369
    • Davies, N.M.1    Davey-Smith, G.2    Windmeijer, F.3    Martin, R.M.4
  • 7
    • 54949119165 scopus 로고    scopus 로고
    • War and wages: The strength of instrumental variables and their sensitivity to unobserved biases
    • Small DS, Rosenbaum P. War and wages: the strength of instrumental variables and their sensitivity to unobserved biases. J Am Statist Assoc. 2008;103:924-933.
    • (2008) J Am Statist Assoc. , vol.103 , pp. 924-933
    • Small, D.S.1    Rosenbaum, P.2
  • 8
    • 84871768280 scopus 로고
    • Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak
    • Bound J, Jaeger D, Baker R. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J Am Statist Assoc. 1995;90:443-450
    • (1995) J Am Statist Assoc. , vol.90 , pp. 443-450
    • Bound, J.1    Jaeger, D.2    Baker, R.3
  • 10
    • 0022573786 scopus 로고
    • The fallacy of employing standardized regression coeffcients and correlations as measures of effect
    • Greenland S, Schlesselman JJ, Criqui MH. The fallacy of employing standardized regression coeffcients and correlations as measures of effect. Am J Epidemiol. 1986;123:203-208.
    • (1986) Am J Epidemiol. , vol.123 , pp. 203-208
    • Greenland, S.1    Schlesselman, J.J.2    Criqui, M.H.3
  • 11
  • 12
    • 84856718639 scopus 로고    scopus 로고
    • Credible mendelian randomization studies: Approaches for evaluating the instrumental variable assumptions
    • Glymour MM, Tchetgen EJ, Robins JM. Credible mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am J Epidemiol. 2012;175:332-339.
    • (2012) Am J Epidemiol. , vol.175 , pp. 332-339
    • Glymour, M.M.1    Tchetgen, E.J.2    Robins, J.M.3
  • 13
    • 30244508525 scopus 로고    scopus 로고
    • Bounds on treatment effects for studies with imperfect compliance
    • Balke A, Pearl J. Bounds on treatment effects for studies with imperfect compliance. J Am Statist Assoc. 1997;92:1171-1176.
    • (1997) J Am Statist Assoc. , vol.92 , pp. 1171-1176
    • Balke, A.1    Pearl, J.2
  • 15
    • 80053941612 scopus 로고    scopus 로고
    • Analysis of the binary instrumental variable model
    • Dechter R, Geffner H, Halpern JY, Eds, London: College Publications
    • Richardson T, Robins JM. Analysis of the binary instrumental variable model. In: Dechter R, Geffner H, Halpern JY, Eds. Heuristics, Probability, and Causality: A Tribute to Judea Pearl. London: College Publications; 2010:415-444.
    • (2010) Heuristics, Probability, and Causality: A Tribute to Judea Pearl , pp. 415-444
    • Richardson, T.1    Robins, J.M.2
  • 16
    • 33750346366 scopus 로고    scopus 로고
    • Bounds on causal effects in three-arm trials with noncompliance
    • Cheng J, Small DS. Bounds on causal effects in three-arm trials with noncompliance. J R Stat Soc Series B. 2006;68:815-836.
    • (2006) J R Stat Soc Series B. , vol.68 , pp. 815-836
    • Cheng, J.1    Small, D.S.2
  • 17
    • 85011121514 scopus 로고    scopus 로고
    • Comment: Identifcation of causal effects using instrumental variables
    • Robins JM, Greenland S. Comment: Identifcation of causal effects using instrumental variables. J Am Statist Assoc. 1996;91:456-458.
    • (1996) J Am Statist Assoc. , vol.91 , pp. 456-458
    • Robins, J.M.1    Greenland, S.2
  • 18
    • 78650324811 scopus 로고    scopus 로고
    • Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009)
    • Imbens GW. Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). J Econ Lit. 2010;48:399-423.
    • (2010) J Econ Lit. , vol.48 , pp. 399-423
    • Imbens, G.W.1
  • 19
    • 0002596470 scopus 로고
    • The analysis of randomized and nonrandomized aIDS treatment trials using a new approach to causal inference in longitudinal studies
    • Sechrest L, Freeman H, Mulley A, Eds, Washington, DC: US Public Health Service
    • Robins JM. The analysis of randomized and nonrandomized aIDS treatment trials using a new approach to causal inference in longitudinal studies. In: Sechrest L, Freeman H, Mulley A, Eds. Health Service Research Methodology: A Focus on AIDS. Washington, DC: US Public Health Service; 1989:113-159.
    • (1989) Health Service Research Methodology: A Focus on AIDS , pp. 113-159
    • Robins, J.M.1
  • 20
    • 0346880128 scopus 로고    scopus 로고
    • Identifcation of causal effects using instrumental variables
    • Angrist JD, Imbens G W, Rubin DB. Identifcation of causal effects using instrumental variables. J Am Statist Assoc. 1996;91:444-455.
    • (1996) J Am Statist Assoc. , vol.91 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 21
    • 0001566850 scopus 로고
    • Identifcation and estimation of local average treatment effects
    • Imbens G W, Angrist JD. Identifcation and estimation of local average treatment effects. Econometrica. 1994;62:467-475.
    • (1994) Econometrica. , vol.62 , pp. 467-475
    • Imbens, G.W.1    Angrist, J.D.2
  • 22
    • 0006742415 scopus 로고    scopus 로고
    • Clinician preferences and the estimation of causal treatment differences
    • Korn EL, Baumrind S. Clinician preferences and the estimation of causal treatment differences. Statistical Science. 1998;13:209-235.
    • (1998) Statistical Science. , vol.13 , pp. 209-235
    • Korn, E.L.1    Baumrind, S.2
  • 23
    • 84862696298 scopus 로고    scopus 로고
    • Instrumental variables in action: Sometimes you get what you need
    • Princeton, NJ: Princeton University Press
    • Angrist JD, Pischke J. Instrumental variables in action: sometimes you get what you need. In: Mostly Harmless Econometrics: An Empiricist's Companion. Princeton, nJ: Princeton University Press; 2009: 113-218.
    • (2009) Mostly Harmless Econometrics: An Empiricist's Companion , pp. 113-218
    • Angrist, J.D.1    Pischke, J.2
  • 24
  • 25
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155:176-184.
    • (2002) Am J Epidemiol. , vol.155 , pp. 176-184
    • Hernán, M.A.1    Hernández-Díaz, S.2    Werler, M.M.3    Mitchell, A.A.4
  • 26
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratifcation bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratifcation bias. Epidemiology. 2003;14:300-306.
    • (2003) Epidemiology. , vol.14 , pp. 300-306
    • Greenland, S.1
  • 27
    • 84972969037 scopus 로고
    • Correcting for non-compliance in randomized trials using structural nested mean models
    • Robins JM. Correcting for non-compliance in randomized trials using structural nested mean models. Community Statistics. 1994;23: 2379-2412.
    • (1994) Community Statistics. , vol.23 , pp. 2379-2412
    • Robins, J.M.1
  • 28
    • 0002317236 scopus 로고    scopus 로고
    • Structural nested failure time models
    • Anderson PK, Keiding N, Eds, Chichester, UK: John Wiley and Sons
    • Robins JM. Structural nested failure time models. In: Anderson PK, Keiding N, Eds. The Encyclopedia of Biostatistics. Chichester, UK: John Wiley and Sons; 1998:4372-4389.
    • (1998) The Encyclopedia of Biostatistics , pp. 4372-4389
    • Robins, J.M.1
  • 29
    • 78651270964 scopus 로고    scopus 로고
    • Building a stronger instrument in an observational study of perinatal care for premature infants
    • Baiocchi M, Small DS, Lorch S, Rosenbaum P. Building a stronger instrument in an observational study of perinatal care for premature infants. J Am Statist Assoc. 2010;105:1285-1296.
    • (2010) J Am Statist Assoc. , vol.105 , pp. 1285-1296
    • Baiocchi, M.1    Small, D.S.2    Lorch, S.3    Rosenbaum, P.4
  • 30
    • 37849042876 scopus 로고    scopus 로고
    • Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results
    • Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results. Int J Biostat. 2007;3:14.
    • (2007) Int J Biostat. , vol.3 , pp. 14
    • Brookhart, M.A.1    Schneeweiss, S.2
  • 31
    • 35348851021 scopus 로고    scopus 로고
    • Sensitivity analysis for instrumental variables regression with overidentifying restrictions
    • Small DS. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J Am Statist Assoc. 2007;102:1049-1058.
    • (2007) J Am Statist Assoc. , vol.102 , pp. 1049-1058
    • Small, D.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.