메뉴 건너뛰기




Volumn 44, Issue 2, 2015, Pages 512-525

Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression

Author keywords

Invalid instruments; Mendelian randomization; Meta analysis; MR Egger test; Pleiotropy; Small study bias

Indexed keywords

DISEASE PREVALENCE; GENETIC ANALYSIS; GENETIC VARIATION; INSTRUMENTATION; META-ANALYSIS; PHENOTYPE; PLEIOTROPY; REGRESSION ANALYSIS; RISK FACTOR;

EID: 84936755918     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dyv080     Document Type: Article
Times cited : (5197)

References (50)
  • 1
    • 0037322022 scopus 로고    scopus 로고
    • 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?
    • Davey Smith G, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1-22.
    • (2003) Int J Epidemiol , vol.32 , pp. 1-22
    • Davey Smith, G.1    Ebrahim, S.2
  • 2
    • 84872042939 scopus 로고    scopus 로고
    • Use of Mendelian randomisation to assess potential benefit of clinical intervention
    • Burgess S, Butterworth A, Malarstig A, Thompson S. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 2012;345:e7325.
    • (2012) BMJ , vol.345
    • Burgess, S.1    Butterworth, A.2    Malarstig, A.3    Thompson, S.4
  • 3
    • 84906838227 scopus 로고    scopus 로고
    • Mendelian randomization: genetic anchors for causal inference in epidemiological studies
    • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 2014;23:89-98.
    • (2014) Hum Mol Genet , vol.23 , pp. 89-98
    • Davey Smith, G.1    Hemani, G.2
  • 4
    • 77951747132 scopus 로고    scopus 로고
    • Mendelian randomization in the era of genomewide association studies
    • Sleiman P, Grant S. Mendelian randomization in the era of genomewide association studies. Clin Chem 2010;56:723-28.
    • (2010) Clin Chem , vol.56 , pp. 723-728
    • Sleiman, P.1    Grant, S.2
  • 5
    • 84936745507 scopus 로고    scopus 로고
    • Mendelian randomization studies: a review of the approaches used and the quality of reporting
    • Boef A, Dekkers O, Le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol 2015;44:496-511.
    • (2015) Int J Epidemiol , vol.44 , pp. 496-511
    • Boef, A.1    Dekkers, O.2    Le Cessie, S.3
  • 6
    • 84884793216 scopus 로고    scopus 로고
    • Power and sample size calculations for mendelian randomization studies using one genetic instrument
    • Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for mendelian randomization studies using one genetic instrument. Int J Epidemiol 2013; 42:1157-63.
    • (2013) Int J Epidemiol , vol.42 , pp. 1157-1163
    • Freeman, G.1    Cowling, B.J.2    Schooling, C.M.3
  • 7
    • 84886426512 scopus 로고    scopus 로고
    • Calculating statistical power in mendelian randomization studies
    • Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in mendelian randomization studies. Int J Epidemiol 2013;42:1497-501.
    • (2013) Int J Epidemiol , vol.42 , pp. 1497-1501
    • Brion, M.J.1    Shakhbazov, K.2    Visscher, P.M.3
  • 8
    • 40849083720 scopus 로고    scopus 로고
    • Mendelian randomization: using genes as instruments for making causal inferences in epidemiology
    • Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. StatMed 2008; 27:1133-63.
    • (2008) StatMed , vol.27 , pp. 1133-1163
    • Lawlor, D.1    Harbord, R.2    Sterne, J.3    Timpson, N.4    Davey Smith, G.5
  • 9
    • 84884736257 scopus 로고    scopus 로고
    • Use of allele scores as instrumental variables for Mendelian randomization
    • Burgess S, Thompson S. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 2013;42: 1134-44.
    • (2013) Int J Epidemiol , vol.42 , pp. 1134-1144
    • Burgess, S.1    Thompson, S.2
  • 10
    • 0037153701 scopus 로고    scopus 로고
    • Data dredging, bias, or confounding
    • Davey Smith G, Ebrahim S. Data dredging, bias, or confounding. BMJ 2002;325:1437-38.
    • (2002) BMJ , vol.325 , pp. 1437-1438
    • Davey Smith, G.1    Ebrahim, S.2
  • 11
    • 0030922816 scopus 로고    scopus 로고
    • Bias in metaanalysis detected by a simple, graphical test
    • Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ 1997;315: 629-34.
    • (1997) BMJ , vol.315 , pp. 629-634
    • Egger, M.1    Davey Smith, G.2    Schneider, M.3    Minder, C.4
  • 12
    • 77949361444 scopus 로고    scopus 로고
    • Modelling multiple sources of dissemination bias inmeta-analysis
    • Bowden J, Jackson D, Thompson S. Modelling multiple sources of dissemination bias inmeta-analysis. StatMed 2010;29:945-55.
    • (2010) StatMed , vol.29 , pp. 945-955
    • Bowden, J.1    Jackson, D.2    Thompson, S.3
  • 13
    • 79961238388 scopus 로고    scopus 로고
    • Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials
    • Sterne J, Sutton A, Ioannidis J et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343:d4002.
    • (2011) BMJ , vol.343
    • Sterne, J.1    Sutton, A.2    Ioannidis, J.3
  • 14
    • 78650636780 scopus 로고    scopus 로고
    • Treatment-effect estimates adjusted for small study effects via a limit meta-analysis
    • Rücker G, Schwarzer G, Carpenter J, Binder H, Schumacher M. Treatment-effect estimates adjusted for small study effects via a limit meta-analysis. Biostatistics 2011;12:122-42.
    • (2011) Biostatistics , vol.12 , pp. 122-142
    • Rücker, G.1    Schwarzer, G.2    Carpenter, J.3    Binder, H.4    Schumacher, M.5
  • 15
    • 50849135481 scopus 로고    scopus 로고
    • A robust p-value for treatment effect in metaanalysis with publication bias
    • Copas J, Malley P. A robust p-value for treatment effect in metaanalysis with publication bias. Stat Med 2008;27:4267-78.
    • (2008) Stat Med , vol.27 , pp. 4267-4278
    • Copas, J.1    Malley, P.2
  • 16
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist J, Imbens G, Rubin D. Identification of causal effects using instrumental variables. J Am Stat Assoc 1996;91:444-55.
    • (1996) J Am Stat Assoc , vol.91 , pp. 444-455
    • Angrist, J.1    Imbens, G.2    Rubin, D.3
  • 17
    • 0001294645 scopus 로고
    • The fitting of straight lines if both variables are subject to error
    • Wald A. The fitting of straight lines if both variables are subject to error. Ann Math Stat 1940;11:284-300.
    • (1940) Ann Math Stat , vol.11 , pp. 284-300
    • Wald, A.1
  • 18
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomisation as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N. Mendelian randomisation as an instrumental variable approach to causal inference. Stat Methods Med Res 2007;16:309-30.
    • (2007) Stat Methods Med Res , vol.16 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 19
    • 84922353689 scopus 로고
    • Two-stage least squares estimation of average causal effects in models with variable treatment intensity
    • Angrist J, Imbens G. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J Am Stat Assoc 1995;90:431-42.
    • (1995) J Am Stat Assoc , vol.90 , pp. 431-442
    • Angrist, J.1    Imbens, G.2
  • 20
    • 84860487671 scopus 로고    scopus 로고
    • Instrumental variables estimation and two stage least squares
    • Nashville, TN: South-Western
    • Wooldridge J. Instrumental variables estimation and two stage least squares. In: Introductory Econometrics: A Modern Approach. Nashville, TN: South-Western, 2009.
    • (2009) Introductory Econometrics: A Modern Approach
    • Wooldridge, J.1
  • 21
    • 84936778645 scopus 로고    scopus 로고
    • Technical report, The Comprehensive R Archive Network. [19 November 2014, date last accessed]
    • Johnson T. Efficient calculation for multi-SNP genetic risk scores. Technical report, The Comprehensive R Archive Network, 2013.http://cran.r-project.org/web/packages/gtx/vignettes/ashg2012.pdf [19 November 2014, date last accessed].
    • (2013) Efficient calculation for multi-SNP genetic risk scores
    • Johnson, T.1
  • 23
    • 84885840876 scopus 로고    scopus 로고
    • Mendelian randomization analysis with multiple genetic variants using summarized data
    • Burgess S, Butterworth A, Thompson S. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013;37:658-65.
    • (2013) Genet Epidemiol , vol.37 , pp. 658-665
    • Burgess, S.1    Butterworth, A.2    Thompson, S.3
  • 24
    • 79961186642 scopus 로고    scopus 로고
    • Random allocation in observational data: how small but robust effects could facilitate hypothesis-free causal inference
    • Davey Smith G. Random allocation in observational data: how small but robust effects could facilitate hypothesis-free causal inference. Epidemiology 2011; 22:460-63.
    • (2011) Epidemiology , vol.22 , pp. 460-463
    • Davey Smith, G.1
  • 26
    • 21844521862 scopus 로고
    • Some applications of radial plots
    • Galbraith R. Some applications of radial plots. J Am Stat Assoc 1994;89:1232-42.
    • (1994) J Am Stat Assoc , vol.89 , pp. 1232-1242
    • Galbraith, R.1
  • 27
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: a comparison of methods
    • Thompson S, Sharp S. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 1999;18:2693-708.
    • (1999) Stat Med , vol.18 , pp. 2693-2708
    • Thompson, S.1    Sharp, S.2
  • 28
    • 0034823867 scopus 로고    scopus 로고
    • Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis
    • Sterne J, Egger M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J Clin Epidemiol 2001;54:1046-55.
    • (2001) J Clin Epidemiol , vol.54 , pp. 1046-1055
    • Sterne, J.1    Egger, M.2
  • 30
    • 84875577737 scopus 로고    scopus 로고
    • Cohort Profile: The 'Children of the 90s'-the index offspring of the Avon Longitudinal Study of Parents and Children
    • Boyd A, Golding J, Macleod J et al. Cohort Profile: The 'Children of the 90s'-the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 2013;42:111-27.
    • (2013) Int J Epidemiol , vol.42 , pp. 111-127
    • Boyd, A.1    Golding, J.2    Macleod, J.3
  • 31
    • 77957947562 scopus 로고    scopus 로고
    • Hundreds of variants clustered in genomic loci and biological pathways affect human height
    • Lango Allen H, Estrada K, Lettre G et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010;467:832-38.
    • (2010) Nature , vol.467 , pp. 832-838
    • Lango Allen, H.1    Estrada, K.2    Lettre, G.3
  • 32
    • 80053907554 scopus 로고    scopus 로고
    • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
    • Ehret G, Munroe P, Rice K et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011;478:103-09.
    • (2011) Nature , vol.478 , pp. 103-109
    • Ehret, G.1    Munroe, P.2    Rice, K.3
  • 33
    • 79953204259 scopus 로고    scopus 로고
    • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
    • Schunkert H, König I, Kathiresan S et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-38.
    • (2011) Nat Genet , vol.43 , pp. 333-338
    • Schunkert, H.1    König, I.2    Kathiresan, S.3
  • 34
    • 67650082354 scopus 로고    scopus 로고
    • Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies
    • Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 2009;338: b1665.
    • (2009) BMJ , vol.338
    • Law, M.R.1    Morris, J.K.2    Wald, N.J.3
  • 35
    • 84896722557 scopus 로고    scopus 로고
    • Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates
    • Taylor A, Davies N, Ware J, VanderWeele T, Davey Smith G, Munafó M. Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates. Econ Hum Biol 2014;13:99-106.
    • (2014) Econ Hum Biol , vol.13 , pp. 99-106
    • Taylor, A.1    Davies, N.2    Ware, J.3    VanderWeele, T.4    Davey Smith, G.5    Munafó, M.6
  • 36
    • 79961177302 scopus 로고    scopus 로고
    • Avoiding bias from weak instruments in Mendelian randomization studies
    • Burgess S, Thompson S; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011;40:755-64.
    • (2011) Int J Epidemiol , vol.40 , pp. 755-764
    • Burgess, S.1    Thompson, S.2
  • 37
    • 77955148591 scopus 로고    scopus 로고
    • Two-sample instrumental variables estimators
    • Inoue A, Solon G. Two-sample instrumental variables estimators. Rev Econ Stat 2010;92:557-61.
    • (2010) Rev Econ Stat , vol.92 , pp. 557-561
    • Inoue, A.1    Solon, G.2
  • 39
    • 84884973036 scopus 로고    scopus 로고
    • Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators
    • Pierce B, Burgess S. Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators. Am J Epidemiol 2013;178:1177-84.
    • (2013) Am J Epidemiol , vol.178 , pp. 1177-1184
    • Pierce, B.1    Burgess, S.2
  • 41
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996;58:267-88.
    • (1996) J R Stat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 42
    • 55549084836 scopus 로고    scopus 로고
    • Detecting invalid instruments using L1-GMM
    • Han C. Detecting invalid instruments using L1-GMM. Econ Lett 2008;101:285-87.
    • (2008) Econ Lett , vol.101 , pp. 285-287
    • Han, C.1
  • 43
    • 0000782256 scopus 로고
    • The bias and moment matrix of the general k-class estimators of the parameters in simultaneous equations
    • Nagar A. The bias and moment matrix of the general k-class estimators of the parameters in simultaneous equations. Econometrica 1959;27:575-95.
    • (1959) Econometrica , vol.27 , pp. 575-595
    • Nagar, A.1
  • 44
    • 84943354221 scopus 로고    scopus 로고
    • Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors
    • PMID: 25773750. [Epub ahead of print.]
    • Burgess S, Scott R, Timpson N, Davey Smith G, Thompson S; EPIC-InterAct Consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 2015. PMID: 25773750. [Epub ahead of print.].
    • (2015) Eur J Epidemiol
    • Burgess, S.1    Scott, R.2    Timpson, N.3    Davey Smith, G.4    Thompson, S.5
  • 45
    • 0033934949 scopus 로고    scopus 로고
    • Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis
    • Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455-63.
    • (2000) Biometrics , vol.56 , pp. 455-463
    • Duval, S.1    Tweedie, R.2
  • 46
    • 33750861296 scopus 로고    scopus 로고
    • Using pseudo-data to correct for publication bias in meta-analysis
    • Bowden Thompson J, Burton P. Using pseudo-data to correct for publication bias in meta-analysis. Stat Med 2006;25: 3798-813.
    • (2006) Stat Med , vol.25 , pp. 3798-3813
    • Bowden Thompson, J.1    Burton, P.2
  • 47
    • 0041876133 scopus 로고    scopus 로고
    • Measuring inconsistency in meta-analyse
    • Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analyse. BMJ 2003;327:557-60.
    • (2003) BMJ , vol.327 , pp. 557-560
    • Higgins, J.1    Thompson, S.2    Deeks, J.3    Altman, D.4
  • 48
    • 35348851021 scopus 로고    scopus 로고
    • Sensitivity analysis for instrumental variables regression with overidentifying restrictions
    • Small D. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J Am Stat Assoc 2007;102: 1049-58.
    • (2007) J Am Stat Assoc , vol.102 , pp. 1049-1058
    • Small, D.1
  • 49
    • 0346307687 scopus 로고    scopus 로고
    • Instrumental variables regression with weak instruments
    • Staiger D, Stock J. Instrumental variables regression with weak instruments. Econometrica 1997;65:557-86.
    • (1997) Econometrica , vol.65 , pp. 557-586
    • Staiger, D.1    Stock, J.2
  • 50
    • 84862696298 scopus 로고    scopus 로고
    • Instrumental variables in action: sometimes you get whatyou need
    • Princeton, NJ: Princeton University Press
    • Angrist J, Pischke J-S. Instrumental variables in action: sometimes you get whatyou need. In: Mostly Harmless Econometrics: An Empiricist'scompanion. Princeton, NJ: Princeton University Press, 2009.
    • (2009) Mostly Harmless Econometrics: An Empiricist'scompanion
    • Angrist, J.1    Pischke, J.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.