-
1
-
-
0037153701
-
Data dredging, bias, or confounding
-
Davey Smith G, Ebrahim S. Data dredging, bias, or confounding. BMJ 2002;325:1437.
-
(2002)
BMJ
, vol.325
, pp. 1437
-
-
Davey Smith, G.1
Ebrahim, S.2
-
2
-
-
0037322022
-
'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?
-
Davey Smith G, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1-22.
-
(2003)
Int J Epidemiol
, vol.32
, pp. 1-22
-
-
Davey Smith, G.1
Ebrahim, S.2
-
3
-
-
40849083720
-
Mendelian randomization: using genes as instruments for making causal inferences in epidemiology
-
Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27: 1133-63.
-
(2008)
Stat Med
, vol.27
, pp. 1133-1163
-
-
Lawlor, D.1
Harbord, R.2
Sterne, J.3
Timpson, N.4
Davey Smith, G.5
-
4
-
-
33645084282
-
Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials
-
Nitsch D, Molokhia M, Smeeth L, DeStavola B, Whittaker J, Leon D. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163:397-403.
-
(2006)
Am J Epidemiol
, vol.163
, pp. 397-403
-
-
Nitsch, D.1
Molokhia, M.2
Smeeth, L.3
DeStavola, B.4
Whittaker, J.5
Leon, D.6
-
5
-
-
0033853460
-
An introduction to instrumental variables for epidemiologists
-
Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol 2000;29:722-29.
-
(2000)
Int J Epidemiol
, vol.29
, pp. 722-729
-
-
Greenland, S.1
-
6
-
-
33646809746
-
Instrumental variables: application and limitations
-
Martens E, Pestman W, de Boer A, Belitser S, Klungel O. Instrumental variables: application and limitations. Epidemiology 2006;17:260-67.
-
(2006)
Epidemiology
, vol.17
, pp. 260-267
-
-
Martens, E.1
Pestman, W.2
de Boer, A.3
Belitser, S.4
Klungel, O.5
-
7
-
-
34547682094
-
Mendelian randomization as an instrumental variable approach to causal inference
-
Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 2007;16(4):309-30.
-
(2007)
Stat Methods Med Res
, vol.16
, Issue.4
, pp. 309-330
-
-
Didelez, V.1
Sheehan, N.2
-
8
-
-
63249089543
-
Mendelian randomization: how it can-and cannot-help confirm causal relations between nutrition and cancer
-
Schatzkin A, Abnet C, Cross A. Mendelian randomization: how it can-and cannot-help confirm causal relations between nutrition and cancer. Cancer Prev Res 2009;2:104-13.
-
(2009)
Cancer Prev Res
, vol.2
, pp. 104-113
-
-
Schatzkin, A.1
Abnet, C.2
Cross, A.3
-
9
-
-
84884793216
-
Power and sample size calculations for Mendelian randomization studies
-
doi:10.1093/ije/dyt110
-
Freeman G, Cowling B, Schooling M. Power and sample size calculations for Mendelian randomization studies. Int J Epidemiol 2013;doi:10.1093/ije/dyt110.
-
(2013)
Int J Epidemiol
-
-
Freeman, G.1
Cowling, B.2
Schooling, M.3
-
10
-
-
84884736257
-
Use of allele scores as instrumental variables for Mendelian randomization
-
Burgess S, Thompson S. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 2013;42: 1134-44.
-
(2013)
Int J Epidemiol
, vol.42
, pp. 1134-1144
-
-
Burgess, S.1
Thompson, S.2
-
11
-
-
79961185600
-
Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants
-
Pierce B, Ahsan H, VanderWeele T. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 2011;40: 740-52.
-
(2011)
Int J Epidemiol
, vol.40
, pp. 740-752
-
-
Pierce, B.1
Ahsan, H.2
VanderWeele, T.3
-
12
-
-
77957778209
-
Assumptions of IV methods for observational epidemiology
-
Didelez V, Meng S, Sheehan N. Assumptions of IV methods for observational epidemiology. Stat Sci 2010;25:22-40.
-
(2010)
Stat Sci
, vol.25
, pp. 22-40
-
-
Didelez, V.1
Meng, S.2
Sheehan, N.3
-
13
-
-
84861827079
-
Using multiple genetic variants as instrumental variables for modifiable risk factors
-
Palmer T, Lawlor D, Harbord R et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 2011;21:223-42.
-
(2011)
Stat Methods Med Res
, vol.21
, pp. 223-242
-
-
Palmer, T.1
Lawlor, D.2
Harbord, R.3
-
14
-
-
79958753488
-
Two-stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias
-
Cai B, Small D, Ten Have T. Two-stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias. Stat Med 2011;30:1809-24.
-
(2011)
Stat Med
, vol.30
, pp. 1809-1824
-
-
Cai, B.1
Small, D.2
Ten Have, T.3
-
15
-
-
84898057789
-
Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model
-
Burgess S; CHD CRP Genetics Collaboration.
-
Burgess S; CHD CRP Genetics Collaboration. Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model. Stat Med 2013;32: 4726-47.
-
(2013)
Stat Med
, vol.32
, pp. 4726-4747
-
-
-
16
-
-
84862638857
-
Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes
-
Burgess S, Thompson S. Improvement of bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Stat Med 15 2012;31:1582-600.
-
(2012)
Stat Med 15
, vol.31
, pp. 1582-1600
-
-
Burgess, S.1
Thompson, S.2
-
17
-
-
0000878807
-
The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one
-
Nelson C, Startz R. The distribution of the instrumental variables estimator and its t-ratio when the instrument is a poor one. J Business 1990;63:125-40.
-
(1990)
J Business
, vol.63
, pp. 125-140
-
-
Nelson, C.1
Startz, R.2
-
20
-
-
1942507436
-
Commentary: the concept of 'Mendelian Randomization'
-
Thomas D, Conti D. Commentary: the concept of 'Mendelian Randomization'. Int J Epidemiol 2004;33:21-25.
-
(2004)
Int J Epidemiol
, vol.33
, pp. 21-25
-
-
Thomas, D.1
Conti, D.2
-
21
-
-
84863304598
-
-
R Development Core Team. Vienna: R Foundation for Statistical Computing.
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2011.
-
(2011)
R: A Language and Environment for Statistical Computing
-
-
-
23
-
-
0001277243
-
Fieller's theorem
-
Armitage P, Colton T (eds). Hoboken NJ: Wiley
-
Buonaccorsi J. Fieller's theorem. In: Armitage P, Colton T (eds). Encyclopedia of Biostatistics.Hoboken NJ: Wiley, 2005.
-
(2005)
Encyclopedia of Biostatistics
-
-
Buonaccorsi, J.1
-
24
-
-
79961177302
-
Avoiding bias from weak instruments in Mendelian randomization studies
-
CRP CHD Genetics Collaboration.
-
Burgess S, Thompson S; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011;40:755-64.
-
(2011)
Int J Epidemiol
, vol.40
, pp. 755-764
-
-
Burgess, S.1
Thompson, S.2
-
25
-
-
80054932205
-
Missing data methods in Mendelian randomization studies with multiple instruments
-
Burgess S, Seaman S, Lawlor D, Casas J, Thompson S. Missing data methods in Mendelian randomization studies with multiple instruments. Am J Epidemiol 2011;174:1069-76.
-
(2011)
Am J Epidemiol
, vol.174
, pp. 1069-1076
-
-
Burgess, S.1
Seaman, S.2
Lawlor, D.3
Casas, J.4
Thompson, S.5
-
26
-
-
79955576466
-
Bias in causal estimates from Mendelian randomization studies with weak instruments
-
Burgess S, Thompson S. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med 2011;30:1312-23.
-
(2011)
Stat Med
, vol.30
, pp. 1312-1323
-
-
Burgess, S.1
Thompson, S.2
-
27
-
-
53349140946
-
Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses
-
Palmer T, Thompson J, Tobin M, Sheehan N, Burton P. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Int J Epidemiol 2008;37:1161-68.
-
(2008)
Int J Epidemiol
, vol.37
, pp. 1161-1168
-
-
Palmer, T.1
Thompson, J.2
Tobin, M.3
Sheehan, N.4
Burton, P.5
-
28
-
-
79958821064
-
Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses
-
Palmer T, Sterne J, Harbord R et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 2011;173: 1392-403.
-
(2011)
Am J Epidemiol
, vol.173
, pp. 1392-1403
-
-
Palmer, T.1
Sterne, J.2
Harbord, R.3
-
29
-
-
0002864224
-
Confounding and collapsibility in causal inference
-
Greenland S, Robins J, Pearl J. Confounding and collapsibility in causal inference. Stat Sci 1999;14:29-46.
-
(1999)
Stat Sci
, vol.14
, pp. 29-46
-
-
Greenland, S.1
Robins, J.2
Pearl, J.3
-
30
-
-
84874962114
-
Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies
-
Harbord R, Didelez V, Palmer T, Meng S, Sterne J, Sheehan N. Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies. Stat Med 2013;32: 1246-58.
-
(2013)
Stat Med
, vol.32
, pp. 1246-1258
-
-
Harbord, R.1
Didelez, V.2
Palmer, T.3
Meng, S.4
Sterne, J.5
Sheehan, N.6
-
32
-
-
84872042939
-
Use of Mendelian randomisation to assess potential benefit of clinical intervention
-
Burgess S, Butterworth A, Malarstig A, Thompson S. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 2012;345:e7325.
-
(2012)
BMJ
, vol.345
-
-
Burgess, S.1
Butterworth, A.2
Malarstig, A.3
Thompson, S.4
-
33
-
-
84884973036
-
Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators
-
Pierce B, Burgess S. Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators. Am J Epidemiol 2013;178:1177-84.
-
(2013)
Am J Epidemiol
, vol.178
, pp. 1177-1184
-
-
Pierce, B.1
Burgess, S.2
|