메뉴 건너뛰기




Volumn 56, Issue 1, 2018, Pages 202-216

Random forest ensembles and extended multiextinction profiles for hyperspectral image classification

Author keywords

Ensemble learning; Extended multiextinction profiles (EMEPs); Hyperspectral image classification; Random forest (RF)

Indexed keywords

DECISION TREES; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; IMAGE ENHANCEMENT; INDEPENDENT COMPONENT ANALYSIS; ROTATION; SENSORS; SPECTROSCOPY; VEGETATION;

EID: 85030640770     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2744662     Document Type: Article
Times cited : (147)

References (56)
  • 1
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral–spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral–spatial classification of hyperspectral images,” Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 5
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 84871993453 scopus 로고    scopus 로고
    • Semisuper-vised local discriminant analysis for feature extraction in hyperspectral images
    • Jan
    • W. Liao, A. Pizurica, P. Scheunders, W. Philips, and Y. Pi, “Semisuper-vised local discriminant analysis for feature extraction in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 184–198, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 184-198
    • Liao, W.1    Pizurica, A.2    Scheunders, P.3    Philips, W.4    Pi, Y.5
  • 8
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, “Feature selection for classification of hyperspectral data by SVM,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297–2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 10
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 54, no. 10, pp. 6232–6251, Oct. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 11
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • Oct
    • P. Ghamisi, Y. Chen, and X. X. Zhu, “A self-improving convolution neural network for the classification of hyperspectral data,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1537–1541, Oct. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the random forest framework for classification of hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492–501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 14
    • 84870760985 scopus 로고    scopus 로고
    • Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data
    • M. Immitzer, C. Atzberger, and T. Koukal, “Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data,” Remote Sens., vol. 4, no. 9, pp. 2661–2693, 2012.
    • (2012) Remote Sens , vol.4 , Issue.9 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 15
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests
    • Jan
    • L. Guo, N. Chehata, C. Mallet, and S. Boukir, “Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 1, pp. 56–66, Jan. 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.1 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 16
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas
    • Dec
    • C. Pelletier, S. Valero, J. Inglada, N. Champion, and G. Dedieu, “Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas,” Remote Sens. Environ., vol. 187, pp. 156–168, Dec. 2016.
    • (2016) Remote Sens. Environ. , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 17
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • Jul
    • E. Tuv, A. Borisov, G. C. Runger, and K. Torkkola, “Feature selection with ensembles, artificial variables, and redundancy elimination,” J. Mach. Learn. Res., vol. 10, pp. 1341–1366, Jul. 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.C.3    Torkkola, K.4
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Bari, Italy
    • Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proc. Int. Conf. Mach. Learn., Bari, Italy, 1996, pp. 148–156.
    • (1996) Proc. Int. Conf. Mach. Learn. , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug
    • T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 23
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Jan
    • J. Xia, P. Du, X. He, and J. Chanussot, “Hyperspectral remote sensing image classification based on rotation forest,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239–243, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 24
    • 85027954351 scopus 로고    scopus 로고
    • Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles
    • Sep
    • J. Xia, M. Dalla Mura, J. Chanussot, P. Du, and X. He, “Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 4768–4786, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 4768-4786
    • Xia, J.1    Dalla Mura, M.2    Chanussot, J.3    Du, P.4    He, X.5
  • 26
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Statist. Soc. B (Methodol.), vol. 36, no. 2, pp. 192–236, 1974.
    • (1974) J. Roy. Statist. Soc. B (Methodol.) , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 27
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Nov
    • Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 28
    • 84896316919 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral images based on hidden Markov random fields
    • May
    • P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, “Spectral–spatial classification of hyperspectral images based on hidden Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565–2574, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 30
    • 80052087931 scopus 로고    scopus 로고
    • Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809–823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 31
    • 84920948074 scopus 로고    scopus 로고
    • Spectral–spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields
    • May
    • J. Xia, J. Chanussot, P. Du, and X. He, “Spectral–spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2532–2546, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2532-2546
    • Xia, J.1    Chanussot, J.2    Du, P.3    He, X.4
  • 32
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Feb
    • M. Pesaresi and J. A. Benediktsson, “A new approach for the morphological segmentation of high-resolution satellite imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 33
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Sep
    • J. A. Benediktsson, M. Pesaresi, and K. Amason, “Classification and feature extraction for remote sensing images from urban areas based on morphological transformations,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 1940–1949, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Amason, K.3
  • 34
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • Oct
    • M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Morphological attribute profiles for the analysis of very high resolution images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747–3762, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 35
    • 78649843439 scopus 로고    scopus 로고
    • Extended profiles with morphological attribute filters for the analysis of hyperspectral data
    • Jul
    • M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with morphological attribute filters for the analysis of hyperspectral data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975–5991, Jul. 2010.
    • (2010) Int. J. Remote Sens. , vol.31 , Issue.22 , pp. 5975-5991
    • Dalla Mura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 36
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral–spatial classification techniques based on attribute profiles
    • May
    • P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, “A survey on spectral–spatial classification techniques based on attribute profiles,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 40
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • nos. Jun
    • A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and applications,” Neural Netw., vol. 13, nos. 4–5, pp. 411–430, Jun. 2000.
    • (2000) Neural Netw , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 41
    • 0001584432 scopus 로고    scopus 로고
    • Antiextensive connected operators for image and sequence processing
    • Apr
    • P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected operators for image and sequence processing,” IEEE Trans. Image Process., vol. 7, no. 4, pp. 555–570, Apr. 1998.
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.4 , pp. 555-570
    • Salembier, P.1    Oliveras, A.2    Garrido, L.3
  • 42
    • 0000697867 scopus 로고
    • Extinction value: A new measurement of persistence
    • Jun
    • C. Vachier, “Extinction value: A new measurement of persistence,” in Proc. IEEE Workshop Nonlinear Signal Image Process., vol. 2. Jun. 1995, pp. 254–257.
    • (1995) Proc. IEEE Workshop Nonlinear Signal Image Process. , vol.2 , pp. 254-257
    • Vachier, C.1
  • 44
    • 84874566970 scopus 로고    scopus 로고
    • Morphological filtering in shape spaces: Applications using tree-based image representations
    • Nov
    • Y. Xu, T. Géraud, and L. Najman, “Morphological filtering in shape spaces: Applications using tree-based image representations,” in Proc. 21st Int. Conf. Pattern Recognit. (ICPR), Nov. 2012, pp. 485–488.
    • (2012) Proc. 21st Int. Conf. Pattern Recognit. (ICPR) , pp. 485-488
    • Xu, Y.1    Géraud, T.2    Najman, L.3
  • 45
    • 0033751041 scopus 로고    scopus 로고
    • Fast computation of a contrast-invariant image representation
    • May
    • P. Monasse and F. Guichard, “Fast computation of a contrast-invariant image representation,” IEEE Trans. Image Process., vol. 9, no. 5, pp. 860–872, May 2000.
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.5 , pp. 860-872
    • Monasse, P.1    Guichard, F.2
  • 48
    • 79957981863 scopus 로고    scopus 로고
    • Rotation of random forests for genomic and proteomic classification problems
    • New York, NY, USA: Springer
    • G. Stiglic, J. J. Rodriguez, and P. Kokol, “Rotation of random forests for genomic and proteomic classification problems,” in Software Tools and Algorithms for Biological Systems, vol. 696. New York, NY, USA: Springer, 2011, pp. 211–221.
    • (2011) Software Tools and Algorithms for Biological Systems , vol.696 , pp. 211-221
    • Stiglic, G.1    Rodriguez, J.J.2    Kokol, P.3
  • 50
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining rotation forest and AdaBoost
    • C.-X. Zhang and J.-S. Zhang, “RotBoost: A technique for combining rotation forest and AdaBoost,” Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524–1536, 2008.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 51
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy,” Mach. Learn., vol. 51, no. 2, pp. 181–207, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 52
    • 84944519357 scopus 로고    scopus 로고
    • Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples
    • Mar
    • J. Xia, J. Chanussot, P. Du, and X. He, “Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1519–1531, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1519-1531
    • Xia, J.1    Chanussot, J.2    Du, P.3    He, X.4
  • 53
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and classification of hyperspectral images using watershed transformation,” Pattern Recognit., vol. 43, no. 7, pp. 2367–2379, 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 54
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 5, pp. 1267–1279, Oct. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 56
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • May
    • M. Dalla Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone, “Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542–546, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.