메뉴 건너뛰기




Volumn 187, Issue , 2016, Pages 156-168

Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas

Author keywords

High resolution; Land cover mapping; Random forest; Satellite image time series; Sentinel 2; Temporal features

Indexed keywords

DECISION TREES; ECONOMIC AND SOCIAL EFFECTS; INPUT OUTPUT PROGRAMS; MAPPING; REMOTE SENSING; SATELLITES; SUPPORT VECTOR MACHINES; TIME SERIES;

EID: 84992151859     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2016.10.010     Document Type: Article
Times cited : (479)

References (75)
  • 2
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson, P.M., Tatnall, A., Introduction neural networks in remote sensing. Int. J. remote sens. 18 (1997), 699–709.
    • (1997) Int. J. remote sens. , vol.18 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.2
  • 3
    • 84902651349 scopus 로고    scopus 로고
    • Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance
    • Baig, M.H.A., Zang, L., Shuai, T., Tong, Q., Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5 (2014), 423–431.
    • (2014) Remote Sens. Lett. , vol.5 , pp. 423-431
    • Baig, M.H.A.1    Zang, L.2    Shuai, T.3    Tong, Q.4
  • 4
    • 31344451662 scopus 로고    scopus 로고
    • Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
    • Beck, P.S., Atzberger, C., Høgda, K.A., Johansen, B., Skidmore, A.K., Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens. Environ. 100 (2006), 321–334.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 321-334
    • Beck, P.S.1    Atzberger, C.2    Høgda, K.A.3    Johansen, B.4    Skidmore, A.K.5
  • 5
    • 84961834117 scopus 로고    scopus 로고
    • Random Forest in remote sensing: a review of applications and future directions
    • Belgiu, M., Drăguţ, L., Random Forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114 (2016), 24–31.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 6
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L., Random Forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Taylor & Francis
    • Breiman, L., Friedman, J., Stone, C.J., Olshen, R., Classification and Regression Trees. 1984, Taylor & Francis.
    • (1984)
    • Breiman, L.1    Friedman, J.2    Stone, C.J.3    Olshen, R.4
  • 10
    • 39749111391 scopus 로고    scopus 로고
    • Contribution of multispectral and multitemporal information from MODIS images to land cover classification
    • Carrão, H., Gonçalves, P., Caetano, M., Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens. of Environ. 112 (2008), 986–997.
    • (2008) Remote Sens. of Environ. , vol.112 , pp. 986-997
    • Carrão, H.1    Gonçalves, P.2    Caetano, M.3
  • 12
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. of Environ. 37 (1991), 35–46.
    • (1991) Remote Sens. of Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 13
    • 0021424184 scopus 로고
    • A physically-based transformation of Thematic Mapper data–the TM Tasseled Cap
    • Crist, E.P., Cicone, R.C., A physically-based transformation of Thematic Mapper data–the TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens., 1984, 256–263.
    • (1984) IEEE Trans. Geosci. Remote Sens. , pp. 256-263
    • Crist, E.P.1    Cicone, R.C.2
  • 18
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C., Franklin, S.E., Dubé, M.G., A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118 (2012), 259–272.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 19
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?. J. Mach. Learn. Res. 15 (2014), 3133–3181.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 20
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A., Brodley, C.E., Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61 (1997), 399–409.
    • (1997) Remote Sens. Environ. , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 21
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales
    • Ghosh, A., Fassnacht, F.E., Joshi, P., Koch, B., A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 26 (2014), 49–63.
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.3    Koch, B.4
  • 24
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
    • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34 (2013), 2607–2654.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.4    Zhao, Y.5    Liang, L.6    Niu, Z.7    Huang, X.8    Fu, H.9    Liu, S.10
  • 26
    • 77955321544 scopus 로고    scopus 로고
    • A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images
    • Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G., A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 114 (2010), 1747–1755.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1747-1755
    • Hagolle, O.1    Huc, M.2    Pascual, D.V.3    Dedieu, G.4
  • 28
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: an alternative to traditional land cover classifiers
    • Hansen, M., Dubayah, R., DeFries, R., Classification trees: an alternative to traditional land cover classifiers. Int. J. Remote Sens. 17 (1996), 1075–1081.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    DeFries, R.3
  • 29
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R., Statistical and structural approaches to texture. Proceedings of the IEEE 67 (1979), 786–804.
    • (1979) Proceedings of the IEEE , vol.67 , pp. 786-804
    • Haralick, R.1
  • 30
    • 84870807305 scopus 로고    scopus 로고
    • Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar
    • Hasan, R.C., Ierodiaconou, D., Monk, J., Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sens. 4 (2012), 3427–3443.
    • (2012) Remote Sens. , vol.4 , pp. 3427-3443
    • Hasan, R.C.1    Ierodiaconou, D.2    Monk, J.3
  • 31
    • 0037140239 scopus 로고    scopus 로고
    • Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance
    • Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G., Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 23 (2002), 1741–1748.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 1741-1748
    • Huang, C.1    Wylie, B.2    Yang, L.3    Homer, C.4    Zylstra, G.5
  • 32
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Huang, X., Zhang, L., An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 51 (2013), 257–272.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 33
    • 84992133967 scopus 로고    scopus 로고
    • OTB Gapfilling, A Temporal Gapfilling for Image Time Series Library
    • Inglada, J., OTB Gapfilling, A Temporal Gapfilling for Image Time Series Library. 2016, 10.5281/zenodo.45572.
    • (2016)
    • Inglada, J.1
  • 34
    • 84992036012 scopus 로고    scopus 로고
    • PhenOTB, Phenological Analysis for Image Time Series
    • Inglada, J., PhenOTB, Phenological Analysis for Image Time Series. 2016, 10.5281/zenodo.45573.
    • (2016)
    • Inglada, J.1
  • 35
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
    • Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sensing 7 (2015), 12356–12379.
    • (2015) Remote Sensing , vol.7 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6    Dedieu, G.7    Sepulcre, G.8    Bontemps, S.9    Defourny, P.10
  • 36
    • 84912086651 scopus 로고    scopus 로고
    • Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data
    • Jia, K., Liang, S., Wei, X., Yao, Y., Su, Y., Jiang, B., Wang, X., Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 6 (2014), 11518–11532.
    • (2014) Remote Sens. , vol.6 , pp. 11518-11532
    • Jia, K.1    Liang, S.2    Wei, X.3    Yao, Y.4    Su, Y.5    Jiang, B.6    Wang, X.7
  • 37
    • 0036699946 scopus 로고    scopus 로고
    • Seasonality extraction by function fitting to time-series of satellite sensor data
    • Jönsson,P., Eklundh, L., Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 40 (2002), 1824–1832.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , pp. 1824-1832
    • Eklundh, L.1
  • 38
    • 5144233854 scopus 로고    scopus 로고
    • Seasonality extraction by function fitting to time-series of satellite sensor data
    • Jönsson,P., Eklundh, L., Seasonality extraction by function fitting to time-series of satellite sensor data. Comput. Geosci. 30 (2004), 833–845.
    • (2004) Comput. Geosci. , vol.30 , pp. 833-845
    • Eklundh, L.1
  • 39
    • 84879725404 scopus 로고
    • The tasselled cap - a graphic description of the spectral-temporal development of agricultural crops as seen by landsat
    • Kauth, R.J., Thomas, G.S., The tasselled cap - a graphic description of the spectral-temporal development of agricultural crops as seen by landsat. LARS Symposia, 1976, 159.
    • (1976) LARS Symposia , pp. 159
    • Kauth, R.J.1    Thomas, G.S.2
  • 40
    • 79960872876 scopus 로고    scopus 로고
    • Predicting disease risks from highly imbalanced data using Random Forest
    • Khalilia, M., Chakraborty, S., Popescu, M., Predicting disease risks from highly imbalanced data using Random Forest. BMC Med. Inform. Decis. Mak., 11, 2011, 51.
    • (2011) BMC Med. Inform. Decis. Mak. , vol.11 , pp. 51
    • Khalilia, M.1    Chakraborty, S.2    Popescu, M.3
  • 41
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research
    • Khatami, R., Mountrakis, G., Stehman, S.V., A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research. Remote Sens. Environ. 177 (2016), 89–100.
    • (2016) Remote Sens. Environ. , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 42
    • 0000873069 scopus 로고
    • A method for the solution of certain nonlinear problems in least squares
    • Levenberg, K., A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math., 1994.
    • (1994) Q. Appl. Math.
    • Levenberg, K.1
  • 43
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by Random Forest
    • Liaw, A., Wiener, M., Classification and regression by Random Forest. R News 2 (2002), 18–22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 44
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • Lin, W.J., Chen, J.J., Class-imbalanced classifiers for high-dimensional data. Brief. Bioinform. 14 (2013), 13–26.
    • (2013) Brief. Bioinform. , vol.14 , pp. 13-26
    • Lin, W.J.1    Chen, J.J.2
  • 45
    • 84884514639 scopus 로고    scopus 로고
    • Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines
    • Löw, F., Dech, S., Conrad, C., Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 85 (2013), 102–119.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.85 , pp. 102-119
    • Löw, F.1    Dech, S.2    Conrad, C.3
  • 46
    • 4143062534 scopus 로고    scopus 로고
    • Comparison of land-cover classification methods in the Brazilian Amazon Basin
    • Lu, D., Mausel, P., Batistella, M., Moran, E., Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogramm. Eng. Remote Sens. 70 (2004), 723–731.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 723-731
    • Lu, D.1    Mausel, P.2    Batistella, M.3    Moran, E.4
  • 47
    • 85027946946 scopus 로고    scopus 로고
    • Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution
    • Lv, Z., Zhang, P., Benediktsson, J., Shi, W., Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (2014), 4644–4652.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , pp. 4644-4652
    • Lv, Z.1    Zhang, P.2    Benediktsson, J.3    Shi, W.4
  • 48
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11 (1963), 431–441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 50
    • 0030136491 scopus 로고    scopus 로고
    • The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
    • McFeeters, S., The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17 (1996), 1425–1432.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1425-1432
    • McFeeters, S.1
  • 51
    • 84954105449 scopus 로고    scopus 로고
    • Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals
    • Meyer, H., Kühnlein, M., Appelhans, T., Nauss, T., Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos. Res. 169 (2016), 424–433.
    • (2016) Atmos. Res. , vol.169 , pp. 424-433
    • Meyer, H.1    Kühnlein, M.2    Appelhans, T.3    Nauss, T.4
  • 52
    • 79955557703 scopus 로고    scopus 로고
    • Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification
    • Mróz, M., Sobieraj, A., others. Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Tech. Sci. 7 (2004), 39–66.
    • (2004) Tech. Sci. , vol.7 , pp. 39-66
    • Mróz, M.1    Sobieraj, A.2
  • 53
    • 84859751452 scopus 로고    scopus 로고
    • Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and Random Forest
    • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., Pereira, J.M., Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and Random Forest. For. Ecol. Manag. 275 (2012), 117–129.
    • (2012) For. Ecol. Manag. , vol.275 , pp. 117-129
    • Oliveira, S.1    Oehler, F.2    San-Miguel-Ayanz, J.3    Camia, A.4    Pereira, J.M.5
  • 55
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest classifier for remote sensing classification
    • Pal, M., Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 26 (2005), 217–222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 57
    • 0036221284 scopus 로고    scopus 로고
    • A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
    • Rogan, J., Franklin, J., Roberts, D.A., A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 80 (2002), 143–156.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 143-156
    • Rogan, J.1    Franklin, J.2    Roberts, D.A.3
  • 60
    • 40849110190 scopus 로고    scopus 로고
    • Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years
    • Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K., Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 21 (2006), 21–28.
    • (2006) Geocarto Int. , vol.21 , pp. 21-28
    • Silleos, N.G.1    Alexandridis, T.K.2    Gitas, I.Z.3    Perakis, K.4
  • 61
    • 78649797017 scopus 로고    scopus 로고
    • A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones
    • Szuster, B.W., Chen, Q., Borger, M., A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography 31 (2011), 525–532.
    • (2011) Applied Geography , vol.31 , pp. 525-532
    • Szuster, B.W.1    Chen, Q.2    Borger, M.3
  • 62
    • 84931270718 scopus 로고    scopus 로고
    • Crop classification of upland fields using random forest of time-series landsat 7 etm+ data
    • Tatsumi, K., Yamashiki, Y., Torres, M.A.C., Taipe, C.L.R., Crop classification of upland fields using random forest of time-series landsat 7 etm+ data. Comput. Electron. Agric. 115 (2015), 171–179.
    • (2015) Comput. Electron. Agric. , vol.115 , pp. 171-179
    • Tatsumi, K.1    Yamashiki, Y.2    Torres, M.A.C.3    Taipe, C.L.R.4
  • 63
    • 77951269660 scopus 로고    scopus 로고
    • Texture orientation and period estimator for discriminating between forests, orchards, vineyards, and tilled fields
    • Trias-Sanz, R., Texture orientation and period estimator for discriminating between forests, orchards, vineyards, and tilled fields. IEEE Trans. Geosci. Remote Sens. 44 (2006), 2755–2760.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2755-2760
    • Trias-Sanz, R.1
  • 65
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Springer Science & Business Media
    • Vapnik, V.N., The nature of statistical learning theory. 1995, Springer Science & Business Media.
    • (1995)
    • Vapnik, V.N.1
  • 66
    • 84992072301 scopus 로고    scopus 로고
    • Statistical learning theory
    • Wiley New York
    • Vapnik, V.N., Statistical learning theory. 1998, Wiley New York.
    • (1998)
    • Vapnik, V.N.1
  • 67
    • 84927805919 scopus 로고    scopus 로고
    • Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution
    • Wang, J., Zhao, Y., Li, C., Yu, L., Liu, D., Gong, P., Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens. 103 (2015), 38–47.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.103 , pp. 38-47
    • Wang, J.1    Zhao, Y.2    Li, C.3    Yu, L.4    Liu, D.5    Gong, P.6
  • 68
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
    • Wardlow, B.D., Egbert, S.L., Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains. Remote Sens. Environ. 112 (2008), 1096–1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 69
    • 45849101525 scopus 로고    scopus 로고
    • Classifying multilevel imagery from SAR and optical sensors by decision fusion
    • Waske, B., van der Linden, S., Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens. 46 (2008), 1457–1466.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1457-1466
    • Waske, B.1    van der Linden, S.2
  • 71
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H., Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27 (2006, jul), 3025–3033.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 3025-3033
    • Xu, H.1
  • 72
    • 46349084185 scopus 로고    scopus 로고
    • A new index for delineating built-up land features in satellite imagery
    • Xu, H., A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 29 (2008, jul), 4269–4276.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 4269-4276
    • Xu, H.1
  • 73
    • 84888877843 scopus 로고    scopus 로고
    • Separability analysis and classification of rice fields using KOMPSAT-2 High Resolution Satellite Imagery
    • Yeom, J., Han, Y., Kim, Y., Separability analysis and classification of rice fields using KOMPSAT-2 High Resolution Satellite Imagery. Res. J. Chem. Environ, 17, 2013, 12.
    • (2013) Res. J. Chem. Environ , vol.17 , pp. 12
    • Yeom, J.1    Han, Y.2    Kim, Y.3
  • 74
    • 0037429468 scopus 로고    scopus 로고
    • Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
    • Zha, Y., Gao, J., Ni, S., Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24 (2003), 583–594.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 583-594
    • Zha, Y.1    Gao, J.2    Ni, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.