메뉴 건너뛰기




Volumn 5, Issue 1, 2017, Pages

Machine learning and systems genomics approaches for multi-omics data

Author keywords

Genomics; Machine learning; Multi omics; Pharmacogenomics; Single nucleotide polymorphisms; Systems genomics

Indexed keywords

COMPUTER MODEL; COMPUTER NETWORK; CONCATENATION BASED INTEGRATION APPROACH; COPY NUMBER VARIATION; ENSEMBLE CLASSIFIER FRAMEWORK; GENE EXPRESSION; GENE METHYLATION; GENETIC ALGORITHM; GENOMICS; GENOTYPE PHENOTYPE CORRELATION; MACHINE LEARNING; MODEL BASED INTEGRATION APPROACH; PHARMACOGENOMICS; PRIORITY JOURNAL; PROBABILISTIC CAUSAL NETWORK FRAMEWORK; REVIEW; SIMULATION; SUPPORT VECTOR MACHINE; TRANSFORMATION BASED INTEGRATION APPROACH;

EID: 85029626553     PISSN: None     EISSN: 20507771     Source Type: Journal    
DOI: 10.1186/s40364-017-0082-y     Document Type: Review
Times cited : (152)

References (70)
  • 1
    • 41849114215 scopus 로고    scopus 로고
    • A case study of personalized medicine
    • Katsanis SH, Javitt J, Hudson K. A case study of personalized medicine. Science. 2008;v320(4):53-4.
    • (2008) Science , vol.V320 , Issue.4 , pp. 53-54
    • Katsanis, S.H.1    Javitt, J.2    Hudson, K.3
  • 2
    • 84864807599 scopus 로고    scopus 로고
    • Personalized health care: from theory to practice
    • Snyderman R. Personalized health care: from theory to practice. Biotechnol J. 2012;v7:973-9.
    • (2012) Biotechnol J , vol.V7 , pp. 973-979
    • Snyderman, R.1
  • 3
    • 84929073385 scopus 로고    scopus 로고
    • Novel drug therapies and diagnostics for personalized medicine and nanomedicine in genome science, nanoscience, and molecular engineering
    • Lin E. Novel drug therapies and diagnostics for personalized medicine and nanomedicine in genome science, nanoscience, and molecular engineering. Pharma Regul Aff. 2012;1:e116.
    • (2012) Pharma Regul Aff , vol.1
    • Lin, E.1
  • 4
    • 83455217098 scopus 로고    scopus 로고
    • Gene-gene interactions among genetic variants from seven candidate genes with pediatric asthma in a Taiwanese population
    • Lin E, Lin CG, Wang JY, Wu LS. Gene-gene interactions among genetic variants from seven candidate genes with pediatric asthma in a Taiwanese population. Curr Topics Genet. 2009;3:83-8.
    • (2009) Curr Topics Genet , vol.3 , pp. 83-88
    • Lin, E.1    Lin, C.G.2    Wang, J.Y.3    Wu, L.S.4
  • 5
    • 77649230939 scopus 로고    scopus 로고
    • Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression
    • Lin E, Hong CJ, Hwang JP, Liou YJ, Yang CH, Cheng D, et al. Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res. 2009;12(6):387-93.
    • (2009) Rejuvenation Res , vol.12 , Issue.6 , pp. 387-393
    • Lin, E.1    Hong, C.J.2    Hwang, J.P.3    Liou, Y.J.4    Yang, C.H.5    Cheng, D.6
  • 6
    • 83455238079 scopus 로고    scopus 로고
    • Gene-gene interactions in a context of individual variability in antipsychotic drug pharmacogenomics
    • Lin E, Tsai SJ. Gene-gene interactions in a context of individual variability in antipsychotic drug pharmacogenomics. Curr Pharmacogenomics Person Med. 2011;9:323-31.
    • (2011) Curr Pharmacogenomics Person Med , vol.9 , pp. 323-331
    • Lin, E.1    Tsai, S.J.2
  • 7
    • 70350462610 scopus 로고    scopus 로고
    • Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes
    • Lin E, Pei D, Huang YJ, Hsieh CH, Wu LS. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes. Genet Test Mol Biomarkers. 2009;13(4):485-93.
    • (2009) Genet Test Mol Biomarkers , vol.13 , Issue.4 , pp. 485-493
    • Lin, E.1    Pei, D.2    Huang, Y.J.3    Hsieh, C.H.4    Wu, L.S.5
  • 8
    • 73949104450 scopus 로고    scopus 로고
    • Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes
    • Wu LS, Hsieh CH, Pei D, Hung YJ, Kuo SW, Lin E. Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes. Nephrol Dial Transplant. 2009;24(11):3360-6.
    • (2009) Nephrol Dial Transplant , vol.24 , Issue.11 , pp. 3360-3366
    • Wu, L.S.1    Hsieh, C.H.2    Pei, D.3    Hung, Y.J.4    Kuo, S.W.5    Lin, E.6
  • 9
    • 84872301586 scopus 로고    scopus 로고
    • Evaluation of the ENPP1 and PLIN single nucleotide polymorphisms with type 2 diabetes in a Taiwanese population: evidence for replication and gene-gene interaction
    • Wang CH, Ke WS, Lin E. Evaluation of the ENPP1 and PLIN single nucleotide polymorphisms with type 2 diabetes in a Taiwanese population: evidence for replication and gene-gene interaction. J Investig Med. 2012;60(8):1169-73.
    • (2012) J Investig Med , vol.60 , Issue.8 , pp. 1169-1173
    • Wang, C.H.1    Ke, W.S.2    Lin, E.3
  • 10
    • 84867013297 scopus 로고    scopus 로고
    • Novel diagnostics R&D for public health and personalized medicine in Taiwan: current state, challenges and opportunities
    • Lin E, Tsai SJ. Novel diagnostics R&D for public health and personalized medicine in Taiwan: current state, challenges and opportunities. Curr Pharmacogenomics Person Med. 2012;10:239-46.
    • (2012) Curr Pharmacogenomics Person Med , vol.10 , pp. 239-246
    • Lin, E.1    Tsai, S.J.2
  • 11
    • 33845527025 scopus 로고    scopus 로고
    • A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population
    • Lin E, Hwang Y, Tzeng CM. A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population. Mol Diagn Ther. 2006;10:367-70.
    • (2006) Mol Diagn Ther , vol.10 , pp. 367-370
    • Lin, E.1    Hwang, Y.2    Tzeng, C.M.3
  • 12
    • 49949088267 scopus 로고    scopus 로고
    • Pharmacogenomics with antidepressants in the STAR*D study
    • Lin E, Chen PS. Pharmacogenomics with antidepressants in the STAR*D study. Pharmacogenomics. 2008;9:935-46.
    • (2008) Pharmacogenomics , vol.9 , pp. 935-946
    • Lin, E.1    Chen, P.S.2
  • 13
    • 84929084053 scopus 로고    scopus 로고
    • Genome-wide association studies in pharmacogenomics of antidepressants
    • Lin E, Lane HY. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics. 2015;16(5):555-66.
    • (2015) Pharmacogenomics , vol.16 , Issue.5 , pp. 555-566
    • Lin, E.1    Lane, H.Y.2
  • 14
    • 84941183602 scopus 로고    scopus 로고
    • Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy
    • Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:334-40.
    • (2016) Prog Neuropsychopharmacol Biol Psychiatry , vol.64 , pp. 334-340
    • Lin, E.1    Tsai, S.J.2
  • 15
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23(1):89-109.
    • (2001) Artif Intell Med , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 16
    • 84857573167 scopus 로고    scopus 로고
    • Assessing gene-gene interactions in pharmacogenomics
    • Lane HY, Tsai GE, Lin E. Assessing gene-gene interactions in pharmacogenomics. Mol Diagn Ther. 2012;16(1):15-27.
    • (2012) Mol Diagn Ther , vol.16 , Issue.1 , pp. 15-27
    • Lane, H.Y.1    Tsai, G.E.2    Lin, E.3
  • 17
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the hadoop ecosystem
    • Landset S, Khoshgoftaar TM, Richter AN, Hasanin T. A survey of open source tools for machine learning with big data in the hadoop ecosystem. J Big Data. 2015;2:24.
    • (2015) J Big Data , vol.2 , pp. 24
    • Landset, S.1    Khoshgoftaar, T.M.2    Richter, A.N.3    Hasanin, T.4
  • 18
    • 85045792864 scopus 로고    scopus 로고
    • Machine learning and predictive algorithms for personalized medicine: from physiology to treatment
    • In:Turnbull A, editor. New York: Nova Science Publishers (in press)
    • Lin E, Tsai SJ. Machine learning and predictive algorithms for personalized medicine: from physiology to treatment. In: Turnbull A, editor. Personalized medicine. New York: Nova Science Publishers (in press).
    • Personalized medicine
    • Lin, E.1    Tsai, S.J.2
  • 19
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn. 1997;29:103-37.
    • (1997) Mach Learn , vol.29 , pp. 103-137
    • Domingos, P.1    Pazzani, M.2
  • 21
    • 0032095524 scopus 로고    scopus 로고
    • Neural networks for intelligent multimedia processing
    • Kung SY, Hwang JN. Neural networks for intelligent multimedia processing. Proc IEEE. 1998;86:1244-72.
    • (1998) Proc IEEE , vol.86 , pp. 1244-1272
    • Kung, S.Y.1    Hwang, J.N.2
  • 26
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175-85.
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 27
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol. 2005;67(suppl):301-20.
    • (2005) J R Stat Soc Series B Stat Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 30
    • 73349119975 scopus 로고    scopus 로고
    • A comparison of classification methods for predicting chronic fatigue syndrome based on genetic data
    • Huang LC, Hsu SY, Lin E. A comparison of classification methods for predicting chronic fatigue syndrome based on genetic data. J Transl Med. 2009;7:81.
    • (2009) J Transl Med , vol.7 , pp. 81
    • Huang, L.C.1    Hsu, S.Y.2    Lin, E.3
  • 31
  • 33
    • 69549106524 scopus 로고    scopus 로고
    • Gender differences and pharmacogenomics with antidepressants in depression
    • In:Hernandez P, Alonso S, editors. New York: Nova
    • Lin E, Hsu SY. Gender differences and pharmacogenomics with antidepressants in depression. In: Hernandez P, Alonso S, editors. Women and Depression. New York: Nova; 2009.
    • (2009) Women and Depression
    • Lin, E.1    Hsu, S.Y.2
  • 34
    • 84865143565 scopus 로고    scopus 로고
    • Development of novel breast cancer recurrence prediction model using support vector machine
    • Kim W, Kim KS, Lee JE, Noh DY, Kim SW, Jung YS, et al. Development of novel breast cancer recurrence prediction model using support vector machine. J Breast Cancer. 2012;15(2):230-8.
    • (2012) J Breast Cancer , vol.15 , Issue.2 , pp. 230-238
    • Kim, W.1    Kim, K.S.2    Lee, J.E.3    Noh, D.Y.4    Kim, S.W.5    Jung, Y.S.6
  • 35
    • 84898006454 scopus 로고    scopus 로고
    • Application of machine learning to predict the recurrence-proneness for cervical cancer
    • Tseng CJ, Lu CJ, Chang CC, Chen GD. Application of machine learning to predict the recurrence-proneness for cervical cancer. Neural Comput & Applic. 2014;24(6):1311-6.
    • (2014) Neural Comput & Applic , vol.24 , Issue.6 , pp. 1311-1316
    • Tseng, C.J.1    Lu, C.J.2    Chang, C.C.3    Chen, G.D.4
  • 36
    • 84896347638 scopus 로고    scopus 로고
    • Risk classification of cancer survival using ANN with gene expression data from multiple laboratories
    • Chen YC, Ke WC, Chiu HW. Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med. 2014;48:1-7.
    • (2014) Comput Biol Med , vol.48 , pp. 1-7
    • Chen, Y.C.1    Ke, W.C.2    Chiu, H.W.3
  • 37
    • 84878374114 scopus 로고    scopus 로고
    • Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods
    • Chang SW, Abdul-Kareem S, Merican AF, Zain RB. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics. 2013;14:170.
    • (2013) BMC Bioinformatics , vol.14 , pp. 170
    • Chang, S.W.1    Abdul-Kareem, S.2    Merican, A.F.3    Zain, R.B.4
  • 38
    • 84885039741 scopus 로고    scopus 로고
    • Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines
    • Rosado P, Lequerica-Fernández P, Villallaín L, Peña I, Sanchez-Lasheras F, de Vicente JC. Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines. Expert Syst Appl. 2013;40(12):4770-6.
    • (2013) Expert Syst Appl , vol.40 , Issue.12 , pp. 4770-4776
    • Rosado, P.1    Lequerica-Fernández, P.2    Villallaín, L.3    Peña, I.4    Sanchez-Lasheras, F.5    de Vicente, J.C.6
  • 39
    • 33750441819 scopus 로고    scopus 로고
    • An artificial neural network approach to the drug efficacy of interferon treatments
    • Lin E, Hwang Y, Wang SC, Gu ZJ, Chen EY. An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics. 2006;7:1017-24.
    • (2006) Pharmacogenomics , vol.7 , pp. 1017-1024
    • Lin, E.1    Hwang, Y.2    Wang, S.C.3    Gu, Z.J.4    Chen, E.Y.5
  • 40
    • 80051566554 scopus 로고    scopus 로고
    • Pharmacogenomics of drug efficacy in the interferon treatment of chronic hepatitis C using classification algorithms
    • Ke WS, Hwang Y, Lin E. Pharmacogenomics of drug efficacy in the interferon treatment of chronic hepatitis C using classification algorithms. Adv Appl Bioinform Chem. 2010;3:39-44.
    • (2010) Adv Appl Bioinform Chem , vol.3 , pp. 39-44
    • Ke, W.S.1    Hwang, Y.2    Lin, E.3
  • 41
    • 53749088871 scopus 로고    scopus 로고
    • A support vector machine approach to assess drug efficacy of interferon-alpha and ribavirin combination therapy
    • Lin E, Hwang Y. A support vector machine approach to assess drug efficacy of interferon-alpha and ribavirin combination therapy. Mol Diagn Ther. 2008;12:219-23.
    • (2008) Mol Diagn Ther , vol.12 , pp. 219-223
    • Lin, E.1    Hwang, Y.2
  • 42
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015; 16(2):85-97.
    • (2015) Nat Rev Genet , vol.16 , Issue.2 , pp. 85-97
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3    Pendergrass, S.A.4    Kim, D.5
  • 43
    • 0037248697 scopus 로고    scopus 로고
    • Predicting HIV drug resistance with neural networks
    • Draghici S, Potter RB. Predicting HIV drug resistance with neural networks. Bioinformatics. 2003;19:98-107.
    • (2003) Bioinformatics , vol.19 , pp. 98-107
    • Draghici, S.1    Potter, R.B.2
  • 45
    • 84859959092 scopus 로고    scopus 로고
    • Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation
    • Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, et al. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol. 2012;10:e1001301.
    • (2012) PLoS Biol , vol.10
    • Zhu, J.1    Sova, P.2    Xu, Q.3    Dombek, K.M.4    Xu, E.Y.5    Vu, H.6
  • 46
    • 84890485602 scopus 로고    scopus 로고
    • ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
    • Kim D, Li R, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 2013;6:23.
    • (2013) BioData Min , vol.6 , pp. 23
    • Kim, D.1    Li, R.2    Dudek, S.M.3    Ritchie, M.D.4
  • 48
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J. Bayesian graphical models for discrete data. Int Stat Rev. 1995;63:215-32.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461-4.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 50
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics. 2006;22(14):1717-22.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 51
    • 84860345395 scopus 로고    scopus 로고
    • Bayesian integrative genomic model for pathway analysis of complex traits
    • Fridley BL, Lund S, Jenkins GD, Wang LA. Bayesian integrative genomic model for pathway analysis of complex traits. Genet Epidemiol. 2012;36:352-9.
    • (2012) Genet Epidemiol , vol.36 , pp. 352-359
    • Fridley, B.L.1    Lund, S.2    Jenkins, G.D.3    Wang, L.A.4
  • 52
    • 80455125871 scopus 로고    scopus 로고
    • Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles
    • Mankoo PK, Shen R, Schultz N, Levine DA, Sander C. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS ONE. 2011;6:e24709.
    • (2011) PLoS ONE , vol.6
    • Mankoo, P.K.1    Shen, R.2    Schultz, N.3    Levine, D.A.4    Sander, C.5
  • 56
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013;29: 2610-6.
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.F.1    Dunson, D.B.2
  • 58
    • 36549013593 scopus 로고    scopus 로고
    • Graph sharpening plus graph integration: a synergy that improves protein functional classification
    • Shin H, Lisewski AM, Lichtarge O. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics. 2007;23:3217-24.
    • (2007) Bioinformatics , vol.23 , pp. 3217-3224
    • Shin, H.1    Lisewski, A.M.2    Lichtarge, O.3
  • 59
    • 84928266005 scopus 로고    scopus 로고
    • Multiomic signature of body weight change: results from a population-based cohort study
    • Wahl S, Vogt S, Stückler F, Krumsiek J, Bartel J, Kacprowski T, et al. Multiomic signature of body weight change: results from a population-based cohort study. BMC Med. 2015;13:48.
    • (2015) BMC Med , vol.13 , pp. 48
    • Wahl, S.1    Vogt, S.2    Stückler, F.3    Krumsiek, J.4    Bartel, J.5    Kacprowski, T.6
  • 60
    • 79251567361 scopus 로고    scopus 로고
    • Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data
    • Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol. 2011;5:21.
    • (2011) BMC Syst Biol , vol.5 , pp. 21
    • Krumsiek, J.1    Suhre, K.2    Illig, T.3    Adamski, J.4    Theis, F.J.5
  • 61
    • 53749102269 scopus 로고    scopus 로고
    • Identification of significant genes in genomics using Bayesian variable selection methods
    • Lin E, Huang LC. Identification of significant genes in genomics using Bayesian variable selection methods. Adv Appl Bioinform Chem. 2008;1:13-8.
    • (2008) Adv Appl Bioinform Chem , vol.1 , pp. 13-18
    • Lin, E.1    Huang, L.C.2
  • 62
    • 61949417042 scopus 로고    scopus 로고
    • Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies
    • Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput. 2009;368-379.
    • (2009) Pac Symp Biocomput , pp. 368-379
    • Bush, W.S.1    Dudek, S.M.2    Ritchie, M.D.3
  • 64
    • 69449088874 scopus 로고    scopus 로고
    • Spatially uniform ReliefF (SURF) for computationally efficient filtering of gene-gene interactions
    • Greene CS, Penrod NM, Kiralis J, Moore JH. Spatially uniform ReliefF (SURF) for computationally efficient filtering of gene-gene interactions. BioData Min. 2009;2:5.
    • (2009) BioData Min , vol.2 , pp. 5
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3    Moore, J.H.4
  • 66
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland JH. Genetic algorithms. Sci Am. 1992;267:66-72.
    • (1992) Sci Am , vol.267 , pp. 66-72
    • Holland, J.H.1
  • 67
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 68
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997; 97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 69
    • 33846539687 scopus 로고    scopus 로고
    • Pattern-recognition techniques with haplotype analysis in pharmacogenomics
    • Lin E, Hwang Y, Liang KH, Chen EY. Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics. 2007;8(1):75-83.
    • (2007) Pharmacogenomics , vol.8 , Issue.1 , pp. 75-83
    • Lin, E.1    Hwang, Y.2    Liang, K.H.3    Chen, E.Y.4
  • 70
    • 84949818508 scopus 로고    scopus 로고
    • Machine learning in genomic medicine: a review of computational problems and data sets
    • Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE. 2016;104(1):176-97.
    • (2016) Proc IEEE , vol.104 , Issue.1 , pp. 176-197
    • Leung, M.K.K.1    Delong, A.2    Alipanahi, B.3    Frey, B.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.