메뉴 건너뛰기




Volumn 7, Issue , 2009, Pages 81-

A comparison of classification methods for predicting chronic fatigue syndrome based on genetic data

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; BAYES THEOREM; CHRONIC FATIGUE SYNDROME; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; DECISION TREE; DISEASE PREDISPOSITION; FEMALE; GENETIC ASSOCIATION; HEREDITY; HUMAN; INTERMETHOD COMPARISON; MAJOR CLINICAL STUDY; MALE; PREDICTION; SENSITIVITY AND SPECIFICITY; SINGLE NUCLEOTIDE POLYMORPHISM; SUPPORT VECTOR MACHINE; ALGORITHM; BIOLOGY; CLASSIFICATION; GENETIC PREDISPOSITION; GENETICS; GENOMICS; METHODOLOGY; REPRODUCIBILITY;

EID: 73349119975     PISSN: None     EISSN: 14795876     Source Type: Journal    
DOI: 10.1186/1479-5876-7-81     Document Type: Article
Times cited : (51)

References (38)
  • 1
    • 45749140945 scopus 로고    scopus 로고
    • A systematic review of chronic fatigue syndrome: don't assume it's depression
    • Griffith JP, Zarrouf FA: A systematic review of chronic fatigue syndrome: don't assume it's depression. Prim Care Companion J Clin sychiatry 2008, 10:120-128.
    • (2008) Prim Care Companion J Clin sychiatry , vol.10 , pp. 120-128
    • Griffith, J.P.1    Zarrouf, F.2
  • 3
    • 0037313180 scopus 로고    scopus 로고
    • Chronic fatigue yndrome: a review
    • Afari N, Buchwald D: Chronic fatigue yndrome: a review. Am J Psychiatry 2003, 160:221-236.
    • (2003) Am J Psychiatry , vol.160 , pp. 221-236
    • Afari, N.1    Buchwald, D.2
  • 5
    • 48249102602 scopus 로고    scopus 로고
    • Neuroaetiology of chronic atigue syndrome: an overview
    • Sanders P, Korf J: Neuroaetiology of chronic atigue syndrome: an overview. World J Biol Psychiatry 2008, 9:165-171.
    • (2008) World J Biol Psychiatry , vol.9 , pp. 165-171
    • Sanders, P.1    Korf, J.2
  • 6
    • 33750441819 scopus 로고    scopus 로고
    • n artificial neural network approach to the drug efficacy of interferon treatments
    • Lin E, Hwang Y, Wang SC, Gu ZJ, Chen EY: n artificial neural network approach to the drug efficacy of interferon treatments. harmacogenomics 2006, 7:1017-1024.
    • (2006) Pharmacogenomics , vol.7 , pp. 1017-1024
    • Lin, E.1    Hwang, Y.2    Wang, S.C.3    Gu, Z.J.4    Chen, E.5
  • 7
    • 33845527025 scopus 로고    scopus 로고
    • A case study of he utility of the HapMap database for pharmacogenomic haplotype analysis in the aiwanese population
    • Lin E, Hwang Y, Tzeng CM: A case study of he utility of the HapMap database for pharmacogenomic haplotype analysis in the aiwanese population. Mol Diagn Ther 2006, 10:367-370.
    • (2006) Mol Diagn Ther , vol.10 , pp. 367-370
    • Lin, E.1    Hwang, Y.2    Tzeng, C.M.3
  • 8
    • 33646073104 scopus 로고    scopus 로고
    • Polymorphisms in genes egulating the HPA axis associated with mpirically delineated classes of unexplained chronic fatigue
    • Smith AK, White PD, Aslakson E, Vollmer-Conna U, Rajeevan MS: Polymorphisms in genes egulating the HPA axis associated with mpirically delineated classes of unexplained chronic fatigue. Pharmacogenomics 2006, 7:387-394.
    • (2006) Pharmacogenomics , vol.7 , pp. 387-394
    • Smith, A.K.1    White, P.D.2    Aslakson, E.3    Vollmer-Conna, U.4    Rajeevan, M.S.5
  • 9
    • 33646070585 scopus 로고    scopus 로고
    • Combinations of single nucleotide olymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue Syndrome
    • Goertzel BN, Pennachin C, de Souza Coelho L, urbaxani B, Maloney EM, Jones JF: Combinations of single nucleotide olymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 2006, 7:475-483.
    • (2006) Pharmacogenomics , vol.7 , pp. 475-483
    • Goertzel, B.N.1    Pennachin, C.2    de Souza Coelho, L.3    urbaxani, B.4    Maloney, E.M.5    Jones, J.F.6
  • 12
    • 33845903040 scopus 로고    scopus 로고
    • Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions
    • Chung Y, Lee SY, Elston RC, Park T: Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions. Bioinformatics 2007, 23:71-76.
    • (2007) Bioinformatics , vol.23 , pp. 71-76
    • Chung, Y.1    Lee, S.Y.2    Elston, R.C.3    Park, T.4
  • 13
    • 62649142886 scopus 로고    scopus 로고
    • A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome
    • Lin E, Hsu SY: A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome. Pharmacogenomics 2009, 10:35-42.
    • (2009) Pharmacogenomics , vol.10 , pp. 35-42
    • Lin, E.1    Hsu, S.Y.2
  • 14
    • 53749102269 scopus 로고    scopus 로고
    • Identification of Significant Genes in Genomics Using Bayesian Variable Selection Methods
    • Lin E, Huang LC: Identification of Significant Genes in Genomics Using Bayesian Variable Selection Methods. Computational Biology and Chemistry: Advances and Applications 2008, 1:13-18.
    • (2008) Computational Biology and Chemistry: Advances and Applications , vol.1 , pp. 13-18
    • Lin, E.1    Huang, L.2
  • 16
    • 33846539687 scopus 로고    scopus 로고
    • Pattern-recognition techniques with haplotype analysis in pharmacogenomics
    • Lin E, Hwang Y, Liang KH, Chen EY: Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics 2007, 8:75-83.
    • (2007) Pharmacogenomics , vol.8 , pp. 75-83
    • Lin, E.1    Hwang, Y.2    Liang, K.H.3    Chen, E.Y.4
  • 17
    • 36448969444 scopus 로고    scopus 로고
    • Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C
    • Lin E, Hwang Y, Chen EY: Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C. Pharmacogenomics 2007, 8:1327-1335.
    • (2007) Pharmacogenomics , vol.8 , pp. 1327-1335
    • Lin, E.1    Hwang, Y.2    Chen, E.Y.3
  • 20
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997, 29:103-137.
    • (1997) Machine Learning , vol.29 , pp. 103-137
    • Domingos, P.1    Pazzani, M.2
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC: A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 1998, 2:127-167.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 127-167
    • Burges, C.J.C.1
  • 26
    • 34249699005 scopus 로고    scopus 로고
    • Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs
    • Chen K, Kurgan L, Ruan J: Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct Biol 2007, 7:25.
    • (2007) BMC Struct Biol , vol.7 , pp. 25
    • Chen, K.1    Kurgan, L.2    Ruan, J.3
  • 27
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G.: An extensive empirical study of feature selection metrics for text classification. J Machine Learning Research 2003, 3:1289-1305.
    • (2003) J Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 28
    • 58149284018 scopus 로고    scopus 로고
    • Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments
    • Zheng C, Kurgan L: Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. BMC Bioinformatics 2008, 9:430.
    • (2008) BMC Bioinformatics , vol.9 , pp. 430
    • Zheng, C.1    Kurgan, L.2
  • 29
    • 0031381525 scopus 로고    scopus 로고
    • John GH: Wrappers for feature subset selection
    • Kohavi R, John GH: Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1
  • 30
    • 53749088871 scopus 로고    scopus 로고
    • A support vector machine approach to assess drug efficacy of interferon-alpha and ribavirin combination therapy
    • Lin E, Hwang Y: A support vector machine approach to assess drug efficacy of interferon-alpha and ribavirin combination therapy. Mol Diagn Ther 2008, 12:219-223.
    • (2008) Mol Diagn Ther , vol.12 , pp. 219-223
    • Lin, E.1    Hwang, Y.2
  • 31
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T: An introduction to ROC analysis. Pattern Recognit Lett 2006, 27:861-874.
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 32
    • 52249124532 scopus 로고    scopus 로고
    • Tumor classification ranking from microarray data
    • Hewett R, Kijsanayothin P: Tumor classification ranking from microarray data. BMC Genomics 2008, 9(Suppl 2):S21.
    • (2008) BMC Genomics , vol.9 , Issue.2
    • Hewett, R.1    Kijsanayothin, P.2
  • 33
    • 62849087796 scopus 로고    scopus 로고
    • Factors influencing the statistical power of complex data analysis protocols for molecular signature development from microarray data
    • Aliferis CF, Statnikov A, Tsamardinos I, Schildcrout JS, Shepherd BE, Harrell FE Jr: Factors influencing the statistical power of complex data analysis protocols for molecular signature development from microarray data. PLoS One. 2009, 4:e4922.
    • (2009) PLoS One , vol.4
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Schildcrout, J.S.4    Shepherd, B.E.5    Harrell, F.E.6
  • 34
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P: A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga P3
  • 35
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 36
    • 45549105600 scopus 로고    scopus 로고
    • Genetic dissection of glucocorticoid receptorfunction in the mouse brain
    • Erdmann G, Berger S, Schütz G: Genetic dissection of glucocorticoid receptorfunction in the mouse brain. J Neuroendocrinol 2008, 20:655-659.
    • (2008) J Neuroendocrinol , vol.20 , pp. 655-659
    • Erdmann, G.1    Berger, S.2    Schütz, G.3
  • 37
    • 13844299846 scopus 로고    scopus 로고
    • Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus
    • Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G: Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 2004, 3:363-371.
    • (2004) Aging Cell , vol.3 , pp. 363-371
    • Garcia, A.1    Steiner, B.2    Kronenberg, G.3    Bick-Sander, A.4    Kempermann, G.5
  • 38
    • 0036230286 scopus 로고    scopus 로고
    • Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome
    • Whorwood CB, Donovan SJ, Flanagan D, Phillips DI, Byrne CD: Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 2002, 51:1066-1075.
    • (2002) Diabetes , vol.51 , pp. 1066-1075
    • Whorwood, C.B.1    Donovan, S.J.2    Flanagan, D.3    Phillips, D.I.4    Byrne, C.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.