-
1
-
-
84908508461
-
Putting big data to good use in neuroscience
-
5349909
-
Sejnowski TJ, Churchland PS, Movshon JA, Putting big data to good use in neuroscience. Nature neuroscience. 2014;17(11):1440–1. doi: 10.1038/nn.383925349909
-
(2014)
Nature neuroscience
, vol.17
, Issue.11
, pp. 1440-1441
-
-
Sejnowski, T.J.1
Churchland, P.S.2
Movshon, J.A.3
-
2
-
-
84907028883
-
Mapping brain activity at scale with cluster computing
-
5068736,..; ()
-
Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, et al. Mapping brain activity at scale with cluster computing. Nature methods. 2014;11(9). doi: 10.1038/nmeth.304125068736
-
(2014)
Nature methods
, vol.11
, Issue.9
-
-
Freeman, J.1
Vladimirov, N.2
Kawashima, T.3
Mu, Y.4
Sofroniew, N.J.5
Bennett, D.V.6
-
3
-
-
84867311062
-
Charting the Brain’s Networks
-
Vivien M, Charting the Brain’s Networks. Nature. 2012;490:293–298.
-
(2012)
Nature
, vol.490
, pp. 293-298
-
-
Vivien, M.1
-
4
-
-
84862698719
-
The Brain Activity Map Project and the Challenge of Functional Connectomics
-
2726828
-
Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R, The Brain Activity Map Project and the Challenge of Functional Connectomics. Neuron. 2012;74(6):970–974. doi: 10.1016/j.neuron.2012.06.00622726828
-
(2012)
Neuron
, vol.74
, Issue.6
, pp. 970-974
-
-
Alivisatos, A.P.1
Chun, M.2
Church, G.M.3
Greenspan, R.J.4
Roukes, M.L.5
Yuste, R.6
-
5
-
-
84861414911
-
The human brain project
-
2649994,.;: –
-
Markram H, The human brain project. Scientific American. 2012;306:50–55. doi: 10.1038/scientificamerican0612-5022649994
-
(2012)
Scientific American
, vol.306
, pp. 50-55
-
-
Markram, H.1
-
6
-
-
84861431900
-
Brain-wide neuronal dynamics during motor adaptation in zebrafish
-
2622571
-
Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature. 2012;485(7399):471–477. doi: 10.1038/nature1105722622571
-
(2012)
Nature
, vol.485
, Issue.7399
, pp. 471-477
-
-
Ahrens, M.B.1
Li, J.M.2
Orger, M.B.3
Robson, D.N.4
Schier, A.F.5
Engert, F.6
-
7
-
-
84903637114
-
Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy
-
4836920
-
Prevedel R, Yoon Yg, Hoffmann M, Pak N, Wetzstein G, Kato S, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods. 2014;11(7):727–730. doi: 10.1038/nmeth.296424836920
-
(2014)
Nature Methods
, vol.11
, Issue.7
, pp. 727-730
-
-
Prevedel, R.1
Yoon, Y.2
Hoffmann, M.3
Pak, N.4
Wetzstein, G.5
Kato, S.6
-
8
-
-
84959230958
-
Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans
-
6712014,..;():
-
Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 2015;(9):33. doi: 10.1073/pnas.150711011226712014
-
(2015)
Proceedings of the National Academy of Sciences of the United States of America
, Issue.9
, pp. 33
-
-
Nguyen, J.P.1
Shipley, F.B.2
Linder, A.N.3
Plummer, G.S.4
Liu, M.5
Setru, S.U.6
-
9
-
-
0036729047
-
Can a biologist fix a radio?—Or, what I learned while studying apoptosis
-
2242150
-
Lazebnik Y, Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer Cell. 2002;2(3):179–182. doi: 10.1016/S1535-6108(02)00133-212242150
-
(2002)
Cancer Cell
, vol.2
, Issue.3
, pp. 179-182
-
-
Lazebnik, Y.1
-
11
-
-
77956324510
-
-
In:.:;. p. Available from:. New York, New York, USA ACM Press
-
James G, Silverman B, Silverman B, Visualizing a classic CPU in action. In: ACM SIGGRAPH 2010 Talks on—SIGGRAPH’10. New York, New York, USA: ACM Press; 2010. p. 1. Available from: http://portal.acm.org/citation.cfm?doid=1837026.1837061. doi: 10.1145/1837026.1837061
-
(2010)
ACM SIGGRAPH 2010 Talks on—SIGGRAPH’10
, pp. 1
-
-
James, G.1
Silverman, B.2
Silverman, B.3
-
12
-
-
84881412920
-
A visual motion detection circuit suggested by Drosophila connectomics
-
3925240
-
Takemura Sy, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature. 2013;500(7461):175–181. doi: 10.1038/nature1245023925240
-
(2013)
Nature
, vol.500
, Issue.7461
, pp. 175-181
-
-
Takemura, S.1
Bharioke, A.2
Lu, Z.3
Nern, A.4
Vitaladevuni, S.5
Rivlin, P.K.6
-
13
-
-
84881453258
-
Connectomic reconstruction of the inner plexiform layer in the mouse retina
-
3925239
-
Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W, Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature. 2013;500(7461):168–174. doi: 10.1038/nature1234623925239
-
(2013)
Nature
, vol.500
, Issue.7461
, pp. 168-174
-
-
Helmstaedter, M.1
Briggman, K.L.2
Turaga, S.C.3
Jain, V.4
Seung, H.S.5
Denk, W.6
-
14
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
5719670
-
Mnih V, Kavukcuoglu K, Silver D, Rusu Aa, Veness J, Bellemare MG, et al. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529–533. doi: 10.1038/nature1423625719670
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.4
Veness, J.5
Bellemare, M.G.6
-
15
-
-
85011429720
-
-
loupis G, Demaine ED, Guo A, Viglietta G. Classic Nintendo Games are (Computationally) Hard. In: Proceedings of the 7th International Conference on Fun with Algorithms (FUN 2014),. Lipari Island, Italy; 2014. p. 41–50. Available from:
-
Aloupis G, Demaine ED, Guo A, Viglietta G. Classic Nintendo Games are (Computationally) Hard. In: Proceedings of the 7th International Conference on Fun with Algorithms (FUN 2014),. Lipari Island, Italy; 2014. p. 41–50. Available from: http://arxiv.org/abs/1203.1895.
-
-
-
-
17
-
-
84859185055
-
From circuits to behavior: a bridge too far?
-
2449960
-
Carandini M, From circuits to behavior: a bridge too far?Nature neuroscience. 2012;15(4):507–9. doi: 10.1038/nn.304322449960
-
(2012)
Nature neuroscience
, vol.15
, Issue.4
, pp. 507-509
-
-
Carandini, M.1
-
18
-
-
70350081617
-
On the Precarious Path of Reverse Neuro-Engineering
-
9503751
-
Marom S, On the Precarious Path of Reverse Neuro-Engineering. Frontiers in Computational Neuroscience. 2009;3(May):3–6. doi: 10.3389/neuro.10.005.200919503751
-
(2009)
Frontiers in Computational Neuroscience
, vol.3
, Issue.May
, pp. 3-6
-
-
Marom, S.1
-
19
-
-
0033672111
-
In the brain, the model is the goal
-
Mel B, In the brain, the model is the goal. Nature Neuroscience. 2000;3(november):90089.
-
(2000)
Nature Neuroscience
, vol.3
, Issue.november
, pp. 90089
-
-
Mel, B.1
-
20
-
-
84910098216
-
The tale of the neuroscientists and the computer: Why mechanistic theory matters
-
5400544
-
Brown JW, The tale of the neuroscientists and the computer: Why mechanistic theory matters. Frontiers in Neuroscience. 2014;8(OCT):1–3. doi: 10.3389/fnins.2014.0034925400544
-
(2014)
Frontiers in Neuroscience
, vol.8
, Issue.OCT
, pp. 1-3
-
-
Brown, J.W.1
-
21
-
-
4043092727
-
Processing of complex stimuli and natural scenes in the visual cortex
-
5302353
-
Kayser C, Kording K, Konig P, Processing of complex stimuli and natural scenes in the visual cortex. Current Opinion in Neurobiology. 2004;14(4):468–473. doi: 10.1016/j.conb.2004.06.00215302353
-
(2004)
Current Opinion in Neurobiology
, vol.14
, Issue.4
, pp. 468-473
-
-
Kayser, C.1
Kording, K.2
Konig, P.3
-
23
-
-
84908681874
-
The atoms of neural computation
-
5359953
-
Marcus G, Marblestone A, Dean T, The atoms of neural computation. Science. 2014;346(6209):551–552. doi: 10.1126/science.126166125359953
-
(2014)
Science
, vol.346
, Issue.6209
, pp. 551-552
-
-
Marcus, G.1
Marblestone, A.2
Dean, T.3
-
24
-
-
33745712893
-
Variability, compensation and homeostasis in neuron and network function
-
6791145
-
Marder E, Goaillard JM, Variability, compensation and homeostasis in neuron and network function. Nature Reviews. 2006;7(July):563–574. doi: 10.1038/nrn194916791145
-
(2006)
Nature Reviews
, vol.7
, Issue.July
, pp. 563-574
-
-
Marder, E.1
Goaillard, J.M.2
-
25
-
-
84861231844
-
Deep molecular diversity of mammalian synapses: why it matters and how to measure it
-
2573027
-
O’Rourke NA, Weiler NC, Micheva KD, Smith SJ, Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nature reviews Neuroscience. 2012;13(6):365–79. doi: 10.1038/nrn317022573027
-
(2012)
Nature reviews Neuroscience
, vol.13
, Issue.6
, pp. 365-379
-
-
O’Rourke, N.A.1
Weiler, N.C.2
Micheva, K.D.3
Smith, S.J.4
-
27
-
-
79960696933
-
A cortical neural prosthesis for restoring and enhancing memory
-
1677369,.; ():
-
Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA, A cortical neural prosthesis for restoring and enhancing memory. Journal of neural engineering. 2011;8(4):046017. doi: 10.1088/1741-2560/8/4/04601721677369
-
(2011)
Journal of neural engineering
, vol.8
, Issue.4
, pp. 046017
-
-
Berger, T.W.1
Hampson, R.E.2
Song, D.3
Goonawardena, A.4
Marmarelis, V.Z.5
Deadwyler, S.A.6
-
28
-
-
0003834557
-
-
Cambridge, MA MIT Press
-
Marr D, VISION. Cambridge, MA: MIT Press; 1982. doi: 10.7551/mitpress/9780262514620.001.0001
-
(1982)
VISION
-
-
Marr, D.1
-
29
-
-
35148818731
-
Neuroanatomy: Cajal and after Cajal
-
7659350
-
Jones EG, Neuroanatomy: Cajal and after Cajal. Brain Research Reviews. 2007;55(2 SPEC. ISS.):248–255. doi: 10.1016/j.brainresrev.2007.06.00117659350
-
(2007)
Brain Research Reviews
, vol.55
, Issue.2 SPEC. ISS.
, pp. 248-255
-
-
Jones, E.G.1
-
30
-
-
84903759143
-
Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome
-
4988196,.; ():
-
Pavlovic DM, Vértes PE, Bullmore ET, Schafer WR, Nichols TE, Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome. PLoS ONE. 2014;9(7):e97584. doi: 10.1371/journal.pone.009758424988196
-
(2014)
PLoS ONE
, vol.9
, Issue.7
, pp. e97584
-
-
Pavlovic, D.M.1
Vértes, P.E.2
Bullmore, E.T.3
Schafer, W.R.4
Nichols, T.E.5
-
31
-
-
85018791927
-
Automatic discovery of cell types and microcircuitry from neural connectomics
-
5928186,.;:
-
Jonas E, Kording K, Automatic discovery of cell types and microcircuitry from neural connectomics. eLife. 2015;4:e04250. doi: 10.7554/eLife.0425025928186
-
(2015)
eLife
, vol.4
, pp. e04250
-
-
Jonas, E.1
Kording, K.2
-
32
-
-
84876008722
-
The Rich Club of the C. elegans Neuronal Connectome
-
3575836
-
Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET, The Rich Club of the C. elegans Neuronal Connectome. Journal of Neuroscience. 2013;33(15):6380–6387. doi: 10.1523/JNEUROSCI.3784-12.201323575836
-
(2013)
Journal of Neuroscience
, vol.33
, Issue.15
, pp. 6380-6387
-
-
Towlson, E.K.1
Vertes, P.E.2
Ahnert, S.E.3
Schafer, W.R.4
Bullmore, E.T.5
-
33
-
-
33749050824
-
Towards neural circuit reconstruction with volume electron microscopy techniques
-
6962767
-
Briggman KL, Denk W, Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology. 2006;16(5):562–570. doi: 10.1016/j.conb.2006.08.01016962767
-
(2006)
Current Opinion in Neurobiology
, vol.16
, Issue.5
, pp. 562-570
-
-
Briggman, K.L.1
Denk, W.2
-
34
-
-
53949102013
-
Ome sweet ome: what can the genome tell us about the connectome?
-
8801435
-
Lichtman JW, Sanes JR, Ome sweet ome: what can the genome tell us about the connectome?Current Opinion in Neurobiology. 2008;18(3):346–353. doi: 10.1016/j.conb.2008.08.01018801435
-
(2008)
Current Opinion in Neurobiology
, vol.18
, Issue.3
, pp. 346-353
-
-
Lichtman, J.W.1
Sanes, J.R.2
-
35
-
-
79952483532
-
Structural properties of the Caenorhabditis elegans neuronal network
-
1304930,.; ():
-
Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB, Structural properties of the Caenorhabditis elegans neuronal network. PLoS computational biology. 2011;7(2):e1001066. doi: 10.1371/journal.pcbi.100106621304930
-
(2011)
PLoS computational biology
, vol.7
, Issue.2
, pp. e1001066
-
-
Varshney, L.R.1
Chen, B.L.2
Paniagua, E.3
Hall, D.H.4
Chklovskii, D.B.5
-
36
-
-
84921466417
-
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
-
5420068
-
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience. 2014;18(1):145–153. doi: 10.1038/nn.388125420068
-
(2014)
Nature Neuroscience
, vol.18
, Issue.1
, pp. 145-153
-
-
Usoskin, D.1
Furlan, A.2
Islam, S.3
Abdo, H.4
Lönnerberg, P.5
Lou, D.6
-
37
-
-
5044234898
-
Using human brain lesions to infer function: a relic from a past era in the fMRI age?
-
5378041
-
Rorden C, Karnath HO, Using human brain lesions to infer function: a relic from a past era in the fMRI age?Nature reviews Neuroscience. 2004;5(10):813–9. doi: 10.1038/nrn152115378041
-
(2004)
Nature reviews Neuroscience
, vol.5
, Issue.10
, pp. 813-819
-
-
Rorden, C.1
Karnath, H.O.2
-
38
-
-
84868114222
-
A GAL4-Driver Line Resource for Drosophila Neurobiology
-
3063364
-
Jenett A, Rubin G, Ngo TTB, Shepherd D, Murphy C, Dionne H, et al. A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Reports. 2012;2(4):991–1001. doi: 10.1016/j.celrep.2012.09.01123063364
-
(2012)
Cell Reports
, vol.2
, Issue.4
, pp. 991-1001
-
-
Jenett, A.1
Rubin, G.2
Ngo, T.T.B.3
Shepherd, D.4
Murphy, C.5
Dionne, H.6
-
39
-
-
84929216843
-
The neuronal architecture of the mushroom body provides a logic for associative learning
-
5535793,..;: –
-
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer Na, Ngo TT, et al. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife. 2014;3:1–47. doi: 10.7554/eLife.0457725535793
-
(2014)
eLife
, vol.3
, pp. 1-47
-
-
Aso, Y.1
Hattori, D.2
Yu, Y.3
Johnston, R.M.4
Iyer, N.5
Ngo, T.T.6
-
40
-
-
84964591650
-
Dissociated functional significance of choice-related activity across the primate dorsal stream
-
():Salt Lake City USA
-
Yates J, Katz L, Park IM, Pillow JW, Huk A, Dissociated functional significance of choice-related activity across the primate dorsal stream. Cosyne Abstracts. 2014;535(7611):Salt Lake City USA.
-
(2014)
Cosyne Abstracts
, vol.535
, Issue.7611
-
-
Yates, J.1
Katz, L.2
Park, I.M.3
Pillow, J.W.4
Huk, A.5
-
41
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
-
4449617
-
Hubel DH, Wiesel TN, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology. 1962;160(1):106–154. 14449617
-
(1962)
The Journal of Physiology
, vol.160
, Issue.1
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
42
-
-
0015145985
-
The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat
-
124915
-
O’Keefe J, Dostrovsky J, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research. 1971;34(1):171–175. 5124915
-
(1971)
Brain Research
, vol.34
, Issue.1
, pp. 171-175
-
-
O’Keefe, J.1
Dostrovsky, J.2
-
43
-
-
23844454091
-
Microstructure of a spatial map in the entorhinal cortex
-
5965463
-
Hafting T, Fyhn M, Molden S, Moser M, Moser EI, Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–806. doi: 10.1038/nature0372115965463
-
(2005)
Nature
, vol.436
, Issue.7052
, pp. 801-806
-
-
Hafting, T.1
Fyhn, M.2
Molden, S.3
Moser, M.4
Moser, E.I.5
-
45
-
-
0029972222
-
Neural responses to polar, hyperbolic, and cartesian grating in area V4 of the macaque monkey
-
899641
-
Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC, Neural responses to polar, hyperbolic, and cartesian grating in area V4 of the macaque monkey. Journal of Neurophysiology. 1996;76(4):2718–2739. 8899641
-
(1996)
Journal of Neurophysiology
, vol.76
, Issue.4
, pp. 2718-2739
-
-
Gallant, J.L.1
Connor, C.E.2
Rakshit, S.3
Lewis, J.W.4
Van Essen, D.C.5
-
46
-
-
0025810779
-
Classifying simple and complex cells on the basis of response modulation
-
909826
-
Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB, Classifying simple and complex cells on the basis of response modulation. Vision Research. 1991;31(7–8):1079–1086. doi: 10.1016/0042-6989(91)90033-21909826
-
(1991)
Vision Research
, vol.31
, Issue.7-8
, pp. 1079-1086
-
-
Skottun, B.C.1
De Valois, R.L.2
Grosof, D.H.3
Movshon, J.A.4
Albrecht, D.G.5
Bonds, A.B.6
-
47
-
-
21344435992
-
Invariant visual representation by single neurons in the human brain
-
5973409
-
Quiroga R, Reddy L, Kreiman G, Koch C, Fried I, Invariant visual representation by single neurons in the human brain. Nature. 2005;435(7045):1102–1107. doi: 10.1038/nature0368715973409
-
(2005)
Nature
, vol.435
, Issue.7045
, pp. 1102-1107
-
-
Quiroga, R.1
Reddy, L.2
Kreiman, G.3
Koch, C.4
Fried, I.5
-
48
-
-
33646170322
-
Weak pairwise correlations imply strongly correlated network states in a neural population
-
6625187
-
Schneidman E, Berry MJ, Segev R, Bialek W, Weak pairwise correlations imply strongly correlated network states in a neural population. Nature. 2006;440(April):1007–1012. doi: 10.1038/nature0470116625187
-
(2006)
Nature
, vol.440
, Issue.April
, pp. 1007-1012
-
-
Schneidman, E.1
Berry, M.J.2
Segev, R.3
Bialek, W.4
-
49
-
-
84907285645
-
Self-organized criticality as a fundamental property of neural systems
-
5294989,.; ():
-
Hesse J, Gross T, Self-organized criticality as a fundamental property of neural systems. Frontiers in Systems Neuroscience. 2014;8(September):166. doi: 10.3389/fnsys.2014.0016625294989
-
(2014)
Frontiers in Systems Neuroscience
, vol.8
, Issue.September
, pp. 166
-
-
Hesse, J.1
Gross, T.2
-
50
-
-
84923374839
-
Granger Causality Analysis in Neuroscience and Neuroimaging
-
5716830
-
Seth AK, Barrett AB, Barnett L, Granger Causality Analysis in Neuroscience and Neuroimaging. Journal of Neuroscience. 2015;35(8):3293–3297. doi: 10.1523/JNEUROSCI.4399-14.201525716830
-
(2015)
Journal of Neuroscience
, vol.35
, Issue.8
, pp. 3293-3297
-
-
Seth, A.K.1
Barrett, A.B.2
Barnett, L.3
-
51
-
-
77949519863
-
On the Similarity of Functional Connectivity between Neurons Estimated across Timescales
-
0174620,.; ():
-
Stevenson IH, Körding KP, On the Similarity of Functional Connectivity between Neurons Estimated across Timescales. PLoS ONE. 2010;5(2):e9206. doi: 10.1371/journal.pone.000920620174620
-
(2010)
PLoS ONE
, vol.5
, Issue.2
, pp. e9206
-
-
Stevenson, I.H.1
Körding, K.P.2
-
53
-
-
84908555723
-
Dimensionality reduction for large-scale neural recordings
-
5151264,.;
-
Cunningham JP, Yu BM, Dimensionality reduction for large-scale neural recordings. Nature Neuroscience. 2014;. doi: 10.1038/nn.377625151264
-
(2014)
Nature Neuroscience
-
-
Cunningham, J.P.1
Yu, B.M.2
-
54
-
-
84863499572
-
Neural population dynamics during reaching
-
2722855
-
Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, et al. Neural population dynamics during reaching. Nature. 2012;487(7405):51–6. doi: 10.1038/nature1112922722855
-
(2012)
Nature
, vol.487
, Issue.7405
, pp. 51-56
-
-
Churchland, M.M.1
Cunningham, J.P.2
Kaufman, M.T.3
Foster, J.D.4
Nuyujukian, P.5
Ryu, S.I.6
-
55
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
0548103
-
Lee DD, Seung HS, Learning the parts of objects by non-negative matrix factorization. Nature. 1999;401(6755):788–91. doi: 10.1038/4456510548103
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
56
-
-
84900313410
-
Spatially Distributed Local Fields in the Hippocampus Encode Rat Position
-
4812401
-
Agarwal G, Stevenson IH, Berenyi A, Mizuseki K, Buzsaki G, Sommer FT, Spatially Distributed Local Fields in the Hippocampus Encode Rat Position. Science. 2014;344(6184):626–630. doi: 10.1126/science.125044424812401
-
(2014)
Science
, vol.344
, Issue.6184
, pp. 626-630
-
-
Agarwal, G.1
Stevenson, I.H.2
Berenyi, A.3
Mizuseki, K.4
Buzsaki, G.5
Sommer, F.T.6
-
57
-
-
40849087731
-
Neuromechanics of muscle synergies for posture and movement
-
8304801
-
Ting LH, McKay JL, Neuromechanics of muscle synergies for posture and movement. Current Opinion in Neurobiology. 2007;17(6):622–628. doi: 10.1016/j.conb.2008.01.00218304801
-
(2007)
Current Opinion in Neurobiology
, vol.17
, Issue.6
, pp. 622-628
-
-
Ting, L.H.1
McKay, J.L.2
-
58
-
-
0037461777
-
Neuronal synchrony does not correlate with motion coherence in cortical area MT
-
2540900
-
Thiele A, Stoner G, Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature. 2003;421(6921):366–370. doi: 10.1038/nature0128512540900
-
(2003)
Nature
, vol.421
, Issue.6921
, pp. 366-370
-
-
Thiele, A.1
Stoner, G.2
-
59
-
-
0034721678
-
Signal-processing machines at the postsynaptic density
-
Kennedy MB, Signal-processing machines at the postsynaptic density. Science (New York, NY). 2000;290(5492):750–4. doi: 10.1126/science.290.5492.750
-
(2000)
Science (New York, NY)
, vol.290
, Issue.5492
, pp. 750-754
-
-
Kennedy, M.B.1
-
60
-
-
3042523540
-
Neuronal Oscillations in Cortical Networks
-
5218136
-
Buzsaki G, Neuronal Oscillations in Cortical Networks. Science. 2004;304(5679):1926–1929. doi: 10.1126/science.109974515218136
-
(2004)
Science
, vol.304
, Issue.5679
, pp. 1926-1929
-
-
Buzsaki, G.1
-
62
-
-
0036592024
-
Cellular, synaptic and network effects of neuromodulation
-
2371506
-
Marder E, Thirumalai V, Cellular, synaptic and network effects of neuromodulation. Neural Networks. 2002;15(4–6):479–493. doi: 10.1016/S0893-6080(02)00043-612371506
-
(2002)
Neural Networks
, vol.15
, Issue.4-6
, pp. 479-493
-
-
Marder, E.1
Thirumalai, V.2
-
63
-
-
23244457444
-
Dendritic Computation
-
6033324
-
London M, Häusser M, Dendritic Computation. Annual Review of Neuroscience. 2005;28(1):503–532. doi: 10.1146/annurev.neuro.28.061604.13570316033324
-
(2005)
Annual Review of Neuroscience
, vol.28
, Issue.1
, pp. 503-532
-
-
London, M.1
Häusser, M.2
-
64
-
-
84870209909
-
A Large-Scale Model of the Functioning Brain
-
3197532
-
Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, et al. A Large-Scale Model of the Functioning Brain. Science. 2012;338(6111):1202–1205. doi: 10.1126/science.122526623197532
-
(2012)
Science
, vol.338
, Issue.6111
, pp. 1202-1205
-
-
Eliasmith, C.1
Stewart, T.C.2
Choo, X.3
Bekolay, T.4
DeWolf, T.5
Tang, Y.6
-
65
-
-
0031368613
-
ACT-R: A Theory of Higher Level Cognition and its Relation to Visual Attention
-
Anderson JR, Matessa M, Lebiere C, ACT-R: A Theory of Higher Level Cognition and its Relation to Visual Attention. Human-Computer Interaction. 1997;12:439–462. doi: 10.1207/s15327051hci1204_5
-
(1997)
Human-Computer Interaction
, vol.12
, pp. 439-462
-
-
Anderson, J.R.1
Matessa, M.2
Lebiere, C.3
-
66
-
-
0025718412
-
Distributed hierarchical processing in the primate cerebral cortex
-
822724
-
Felleman DJ, Van Essen DC, Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991). 1991;1(1):1–47. doi: 10.1093/cercor/1.1.11822724
-
(1991)
Cerebral cortex (New York, NY: 1991)
, vol.1
, Issue.1
, pp. 1-47
-
-
Felleman, D.J.1
Van Essen, D.C.2
-
67
-
-
84959091021
-
Understanding Neural Networks Through Deep Visualization
-
Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding Neural Networks Through Deep Visualization. International Conference on Machine Learning—Deep Learning Workshop 2015. 2015; p. 12.
-
(2015)
International Conference on Machine Learning—Deep Learning Workshop
, vol.2015
, pp. 12
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
69
-
-
85011410690
-
-
ipton RJ, Regan KW. Magic To Do; 2016. Available from:
-
Lipton RJ, Regan KW. Magic To Do; 2016. Available from: https://rjlipton.wordpress.com/2016/02/07/magic-to-do/.
-
-
-
-
71
-
-
84889407828
-
Granger Causality: Basic Theory and Application to Neuroscience
-
Ding M, Chen Y, Bressler SL, Granger Causality: Basic Theory and Application to Neuroscience. Handbook of Time Series Analysis. 2006;(February):451–474. doi: 10.1002/9783527609970.ch17
-
(2006)
Handbook of Time Series Analysis
, Issue.February
, pp. 451-474
-
-
Ding, M.1
Chen, Y.2
Bressler, S.L.3
-
72
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2012;12:2825–2830.
-
(2012)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
|