메뉴 건너뛰기




Volumn 19, Issue 3, 2016, Pages 356-365

Using goal-driven deep learning models to understand sensory cortex

Author keywords

[No Author keywords available]

Indexed keywords

AUDITORY CORTEX; FEEDBACK SYSTEM; HUMAN; LEARNING; NERVE CELL MEMBRANE POTENTIAL; NERVE CELL NETWORK; NERVE POTENTIAL; PERCEPTION; PRIORITY JOURNAL; REVIEW; SENSORY CORTEX; SENSORY SYSTEM; STIMULUS RESPONSE; TASK PERFORMANCE; VISUAL CORTEX; ANIMAL; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; MOTIVATION; PHYSIOLOGY; SOMATOSENSORY CORTEX;

EID: 84975760699     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.4244     Document Type: Review
Times cited : (1241)

References (74)
  • 1
    • 34447552444 scopus 로고    scopus 로고
    • Untangling invariant object recognition
    • DiCarlo, J.J. & Cox, D.D. Untangling invariant object recognition. Trends Cogn. Sci. 11, 333-341 (2007).
    • (2007) Trends Cogn. Sci. , vol.11 , pp. 333-341
    • DiCarlo, J.J.1    Cox, D.D.2
  • 2
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?
    • DiCarlo, J.J., Zoccolan, D. & Rust, N.C. How does the brain solve visual object recognition? Neuron 73, 415-434 (2012).
    • (2012) Neuron , vol.73 , pp. 415-434
    • DiCarlo, J.J.1    Zoccolan, D.2    Rust, N.C.3
  • 3
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1-47 (1991).
    • (1991) Cereb. Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 4
    • 0036532556 scopus 로고    scopus 로고
    • The topography of high-order human object areas
    • Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176-184 (2002).
    • (2002) Trends Cogn. Sci. , vol.6 , pp. 176-184
    • Malach, R.1    Levy, I.2    Hasson, U.3
  • 5
    • 27944447612 scopus 로고    scopus 로고
    • Do we know what the early visual system does?
    • Carandini, M. et al. Do we know what the early visual system does? J. Neurosci. 25, 10577-10597 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 10577-10597
    • Carandini, M.1
  • 6
    • 84879939903 scopus 로고    scopus 로고
    • Trade-off between curvature tuning and position invariance in visual area V4
    • Sharpee, T.O., Kouh, M. & Reynolds, J.H. Trade-off between curvature tuning and position invariance in visual area V4. Proc. Natl. Acad. Sci. USA 110, 11618-11623 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 11618-11623
    • Sharpee, T.O.1    Kouh, M.2    Reynolds, J.H.3
  • 7
    • 33751541395 scopus 로고    scopus 로고
    • Spectral receptive feld properties explain shape selectivity in area V4
    • David, S.V., Hayden, B.Y. & Gallant, J.L. Spectral receptive feld properties explain shape selectivity in area V4. J. Neurophysiol. 96, 3492-3505 (2006).
    • (2006) J. Neurophysiol. , vol.96 , pp. 3492-3505
    • David, S.V.1    Hayden, B.Y.2    Gallant, J.L.3
  • 8
    • 0029972222 scopus 로고    scopus 로고
    • Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey
    • Gallant, J.L., Connor, C.E., Rakshit, S., Lewis, J.W. & Van Essen, D.C. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J. Neurophysiol. 76, 2718-2739 (1996).
    • (1996) J. Neurophysiol. , vol.76 , pp. 2718-2739
    • Gallant, J.L.1    Connor, C.E.2    Rakshit, S.3    Lewis, J.W.4    Van Essen, D.C.5
  • 10
    • 70449311374 scopus 로고
    • Receptive felds of single neurones in the cat's striate cortex
    • Hubel, D.H. & Wiesel, T.N. Receptive felds of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574-591 (1959).
    • (1959) J. Physiol. (Lond.) , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 11
    • 0019152630 scopus 로고
    • A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193-202 (1980).
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1    Neocognitron2
  • 12
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019-1025 (1999).
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 13
    • 34247096930 scopus 로고    scopus 로고
    • A feedforward architecture accounts for rapid categorization
    • Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424-6429 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 6424-6429
    • Serre, T.1    Oliva, A.2    Poggio, T.3
  • 15
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • Pinto, N., Doukhan, D., DiCarlo, J.J. & Cox, D.D. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5, e1000579 (2009).
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000579
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 17
    • 84155167791 scopus 로고    scopus 로고
    • Normalization as a canonical neural computation
    • Carandini, M. & Heeger, D.J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51-62 (2012).
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 51-62
    • Carandini, M.1    Heeger, D.J.2
  • 18
    • 84898929708 scopus 로고    scopus 로고
    • Hierarchical modular optimization of convolutional networks achieves representations similar to macaque it and human ventral stream
    • Yamins, D., Hong, H., Cadieu, C. & Dicarlo, J. Hierarchical modular optimization of convolutional networks achieves representations similar to macaque it and human ventral stream. Adv. Neural Inf. Process. Syst. 26, 3093-3101 (2013).
    • (2013) Adv. Neural Inf. Process. Syst. , vol.26 , pp. 3093-3101
    • Yamins, D.1    Hong, H.2    Cadieu, C.3    DiCarlo, J.4
  • 19
    • 0018333814 scopus 로고
    • Responses of striate cortex cells to grating and checkerboard patterns
    • De Valois, K.K., De Valois, R.L. & Yund, E.W. Responses of striate cortex cells to grating and checkerboard patterns. J. Physiol. (Lond.) 291, 483-505 (1979).
    • (1979) J. Physiol. (Lond.) , vol.291 , pp. 483-505
    • De Valois, K.K.1    De Valois, R.L.2    Yund, E.W.3
  • 20
    • 0023583669 scopus 로고
    • An evaluation of the two-dimensional Gabor flter model of simple receptive felds in cat striate cortex
    • Jones, J.P. & Palmer, L.A. An evaluation of the two-dimensional Gabor flter model of simple receptive felds in cat striate cortex. J. Neurophysiol. 58, 1233-1258 (1987).
    • (1987) J. Neurophysiol. , vol.58 , pp. 1233-1258
    • Jones, J.P.1    Palmer, L.A.2
  • 21
    • 0018196452 scopus 로고
    • Spatial summation in the receptive felds of simple cells in the cat's striate cortex
    • Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial summation in the receptive felds of simple cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 53-77 (1978).
    • (1978) J. Physiol. (Lond.) , vol.283 , pp. 53-77
    • Movshon, J.A.1    Thompson, I.D.2    Tolhurst, D.J.3
  • 22
    • 33646507039 scopus 로고    scopus 로고
    • Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex
    • Klein, D.J., Simon, J.Z., Depireux, D.A. & Shamma, S.A. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J. Comput. Neurosci. 20, 111-136 (2006).
    • (2006) J. Comput. Neurosci. , vol.20 , pp. 111-136
    • Klein, D.J.1    Simon, J.Z.2    Depireux, D.A.3    Shamma, S.A.4
  • 23
    • 0002014402 scopus 로고
    • Possible principles underlying the transformations of sensory messages
    • Barlow, H.B. Possible principles underlying the transformations of sensory messages. in Sensory Communication Vol. 1, 217-234 (1961).
    • (1961) Sensory Communication , vol.1 , pp. 217-234
    • Barlow, H.B.1
  • 24
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive feld properties by learning a sparse code for natural images
    • Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive feld properties by learning a sparse code for natural images. Nature 381, 607-609 (1996).
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 25
    • 0034118616 scopus 로고    scopus 로고
    • Neural representation and the cortical code
    • deCharms, R.C. & Zador, A. Neural representation and the cortical code. Annu. Rev. Neurosci. 23, 613-647 (2000).
    • (2000) Annu. Rev. Neurosci. , vol.23 , pp. 613-647
    • DeCharms, R.C.1    Zador, A.2
  • 27
    • 0029294644 scopus 로고
    • Shape representation in the inferior temporal cortex of monkeys
    • Logothetis, N.K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552-563 (1995).
    • (1995) Curr. Biol. , vol.5 , pp. 552-563
    • Logothetis, N.K.1    Pauls, J.2    Poggio, T.3
  • 28
    • 36049036819 scopus 로고    scopus 로고
    • Trade-off between object selectivity and tolerance in monkey inferotemporal cortex
    • Zoccolan, D., Kouh, M., Poggio, T. & DiCarlo, J.J. Trade-off between object selectivity and tolerance in monkey inferotemporal cortex. J. Neurosci. 27, 12292-12307 (2007).
    • (2007) J. Neurosci. , vol.27 , pp. 12292-12307
    • Zoccolan, D.1    Kouh, M.2    Poggio, T.3    DiCarlo, J.J.4
  • 29
    • 79955004157 scopus 로고    scopus 로고
    • Relating population-code representations between man, monkey, and computational models
    • Kriegeskorte, N. Relating population-code representations between man, monkey, and computational models. Front. Neurosci. 3, 363-373 (2009).
    • (2009) Front. Neurosci. , vol.3 , pp. 363-373
    • Kriegeskorte, N.1
  • 30
    • 0021700041 scopus 로고
    • Visual routines
    • Ullman, S. Visual routines. Cognition 18, 97-159 (1984).
    • (1984) Cognition , vol.18 , pp. 97-159
    • Ullman, S.1
  • 31
    • 0028969330 scopus 로고
    • Visual feature integration and the temporal correlation hypothesis
    • Singer, W. & Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555-586 (1995).
    • (1995) Annu. Rev. Neurosci. , vol.18 , pp. 555-586
    • Singer, W.1    Gray, C.M.2
  • 32
    • 84942909020 scopus 로고    scopus 로고
    • Simple learned weighted sums of inferior temporal neuronal fring rates accurately predict human core object recognition performance
    • Majaj, N.J., Hong, H., Solomon, E.A. & DiCarlo, J.J. Simple learned weighted sums of inferior temporal neuronal fring rates accurately predict human core object recognition performance. J. Neurosci. 35, 13402-13418 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 13402-13418
    • Majaj, N.J.1    Hong, H.2    Solomon, E.A.3    DiCarlo, J.J.4
  • 33
    • 84902213589 scopus 로고    scopus 로고
    • Performance-optimized hierarchical models predict neural responses in higher visual cortex
    • Yamins, D.L.K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619-8624 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 8619-8624
    • Yamins, D.L.K.1
  • 34
    • 84919607718 scopus 로고    scopus 로고
    • Deep neural networks rival the representation of primate IT cortex for core visual object recognition
    • Cadieu, C.F. et al. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003963
    • Cadieu, C.F.1
  • 35
    • 84912102994 scopus 로고    scopus 로고
    • Deep supervised, but not unsupervised, models may explain IT cortical representation
    • Khaligh-Razavi, S.M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003915
    • Khaligh-Razavi, S.M.1    Kriegeskorte, N.2
  • 36
    • 84936878573 scopus 로고    scopus 로고
    • Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
    • Güçlü, U. & van Gerven, M.A. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005-10014 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 10005-10014
    • Güçlü, U.1    Van Gerven, M.A.2
  • 38
    • 80052264770 scopus 로고    scopus 로고
    • Metamers of the ventral stream
    • Freeman, J. & Simoncelli, E.P. Metamers of the ventral stream. Nat. Neurosci. 14, 1195-1201 (2011).
    • (2011) Nat. Neurosci. , vol.14 , pp. 1195-1201
    • Freeman, J.1    Simoncelli, E.P.2
  • 39
    • 0036898670 scopus 로고    scopus 로고
    • Population coding of shape in area V4
    • Pasupathy, A. & Connor, C.E. Population coding of shape in area V4. Nat. Neurosci. 5, 1332-1338 (2002).
    • (2002) Nat. Neurosci. , vol.5 , pp. 1332-1338
    • Pasupathy, A.1    Connor, C.E.2
  • 40
    • 84975755993 scopus 로고    scopus 로고
    • Functional organization of auditory cortex revealed by neural networks optimized for auditory tasks
    • Kell, A., Yamins, D., Norman-Haignere, S. & McDermott, J. Functional organization of auditory cortex revealed by neural networks optimized for auditory tasks. Soc. Neurosci. Abstr. 466.04 (2015).
    • (2015) Soc. Neurosci. Abstr. , vol.466 , Issue.4
    • Kell, A.1    Yamins, D.2    Norman-Haignere, S.3    McDermott, J.4
  • 42
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • Bottou, L. Large-scale machine learning with stochastic gradient descent. in Proc. COMPSTAT 2010, 177-186 (Springer, 2010).
    • (2010) Proc. COMPSTAT 2010 , pp. 177-186
    • Bottou, L.1
  • 45
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • Snoek, J., Larochelle, H. & Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 26, 2951-2959 (2012).
    • (2012) Adv. Neural Inf. Process. Syst. , vol.26 , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 46
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • Bergstra, J., Yamins, D. & Cox, D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In Proc. 30th International Conference on Machine Learning 115-123, http://jmlr.csail.mit.edu/proceedings/papers/v28/(2013).
    • (2013) Proc. 30th International Conference on Machine Learning , pp. 115-123
    • Bergstra, J.1    Yamins, D.2    Cox, D.3
  • 48
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • Pinto, N., Cox, D.D. & DiCarlo, J.J. Why is real-world visual object recognition hard? PLoS Comput. Biol. 4, e27 (2008).
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e27
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 53
    • 50049100348 scopus 로고    scopus 로고
    • Spatio-temporal correlations and visual signalling in a complete neuronal population
    • Pillow, J.W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995-999 (2008).
    • (2008) Nature , vol.454 , pp. 995-999
    • Pillow, J.W.1
  • 55
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Hinton, G.E., Dayan, P., Frey, B.J. & Neal, R.M. The "wake-sleep" algorithm for unsupervised neural networks. Science 268, 1158-1161 (1995).
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 56
    • 56749102488 scopus 로고    scopus 로고
    • Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • Springer
    • Zhu, L.L., Lin, C., Huang, H., Chen, Y. & Yuille, A. Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. in Computer Vision-ECCV 2008, 759-773 (Springer, 2008).
    • (2008) Computer Vision-ECCV 2008 , pp. 759-773
    • Zhu, L.L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5
  • 57
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • (eds. Guyon, I., Dror, G & Lemaire, V.) Microtome
    • Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Unsupervised and Transfer Learning: Challenges in Machine Learning Vol. 7 (eds. Guyon, I., Dror, G & Lemaire, V.) 29-41 (Microtome, 2013).
    • (2013) Unsupervised and Transfer Learning: Challenges in Machine Learning , vol.7 , pp. 29-41
    • Bengio, Y.1
  • 58
    • 84887390404 scopus 로고    scopus 로고
    • Context-dependent computation by recurrent dynamics in prefrontal cortex
    • Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).
    • (2013) Nature , vol.503 , pp. 78-84
    • Mante, V.1    Sussillo, D.2    Shenoy, K.V.3    Newsome, W.T.4
  • 60
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015).
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 61
    • 84859468294 scopus 로고    scopus 로고
    • Choice-specifc sequences in parietal cortex during a virtual-navigation decision task
    • Harvey, C.D., Coen, P. & Tank, D.W. Choice-specifc sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62-68 (2012).
    • (2012) Nature , vol.484 , pp. 62-68
    • Harvey, C.D.1    Coen, P.2    Tank, D.W.3
  • 62
    • 84948671542 scopus 로고    scopus 로고
    • Neural differentiation tracks improved recall of competing memories following interleaved study and retrieval practice
    • Hulbert, J. & Norman, K. Neural differentiation tracks improved recall of competing memories following interleaved study and retrieval practice. Cereb. Cortex 25, 3994-4008 (2015).
    • (2015) Cereb. Cortex , vol.25 , pp. 3994-4008
    • Hulbert, J.1    Norman, K.2
  • 63
    • 27644475783 scopus 로고    scopus 로고
    • Fast readout of object identity from macaque inferior temporal cortex
    • Hung, C.P., Kreiman, G., Poggio, T. & DiCarlo, J.J. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863-866 (2005).
    • (2005) Science , vol.310 , pp. 863-866
    • Hung, C.P.1    Kreiman, G.2    Poggio, T.3    DiCarlo, J.J.4
  • 64
    • 77957368767 scopus 로고    scopus 로고
    • Selectivity and tolerance ("invariance") both increase as visual information propagates from cortical area V4 to IT
    • Rust, N.C. & Dicarlo, J.J. Selectivity and tolerance ("invariance") both increase as visual information propagates from cortical area V4 to IT. J. Neurosci. 30, 12978-12995 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 12978-12995
    • Rust, N.C.1    DiCarlo, J.J.2
  • 65
    • 0035846981 scopus 로고    scopus 로고
    • Categorical representation of visual stimuli in the primate prefrontal cortex
    • Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312-316 (2001).
    • (2001) Science , vol.291 , pp. 312-316
    • Freedman, D.J.1    Riesenhuber, M.2    Poggio, T.3    Miller, E.K.4
  • 66
    • 84880918745 scopus 로고    scopus 로고
    • Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information
    • Pagan, M., Urban, L.S., Wohl, M.P. & Rust, N.C. Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information. Nat. Neurosci. 16, 1132-1139 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1132-1139
    • Pagan, M.1    Urban, L.S.2    Wohl, M.P.3    Rust, N.C.4
  • 67
    • 84930625079 scopus 로고    scopus 로고
    • Understanding brains: Details, intuition, and big data
    • Marder, E. Understanding brains: details, intuition, and big data. PLoS Biol. 13, e1002147 (2015).
    • (2015) PLoS Biol. , vol.13 , pp. e1002147
    • Marder, E.1
  • 69
    • 54949090307 scopus 로고    scopus 로고
    • A neural code for three-dimensional object shape in macaque inferotemporal cortex
    • Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z. & Connor, C.E. A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat. Neurosci. 11, 1352-1360 (2008).
    • (2008) Nat. Neurosci. , vol.11 , pp. 1352-1360
    • Yamane, Y.1    Carlson, E.T.2    Bowman, K.C.3    Wang, Z.4    Connor, C.E.5
  • 70
    • 84930227069 scopus 로고    scopus 로고
    • Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination
    • Afraz, A., Boyden, E.S. & DiCarlo, J.J. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc. Natl. Acad. Sci. USA 112, 6730-6735 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 6730-6735
    • Afraz, A.1    Boyden, E.S.2    DiCarlo, J.J.3
  • 72
    • 84973935944 scopus 로고
    • The scope of neuroethology
    • Hoyle, G. The scope of neuroethology. Behav. Brain Sci. 7, 367-381 (1984).
    • (1984) Behav. Brain Sci. , vol.7 , pp. 367-381
    • Hoyle, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.