-
1
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
Ackley, D. H., Hinton, G. E., Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
-
(1985)
Cognitive Science
, vol.9
, pp. 147-169
-
-
Ackley, D.H.1
Hinton, G.E.2
Sejnowski, T.J.3
-
3
-
-
0000683869
-
Gradient following without back-propagation in layered network
-
Piscataway, NJ
-
Barto, A., Jordan, M. (1987). Gradient following without back-propagation in layered networks. In Proceedings of the 1st Annual International Conference on Neural Networks (vol. 2, pp. 629-636). Piscataway, NJ.
-
(1987)
In Proceedings of the 1st Annual International Conference on Neural Networks
, vol.2
, pp. 629-636
-
-
Barto, A.1
Jordan, M.2
-
4
-
-
84869753419
-
Canonical microcircuits for predictive coding
-
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695- 711.
-
(2012)
Neuron
, vol.76
, pp. 695- 711
-
-
Bastos, A.M.1
Usrey, W.M.2
Adams, R.A.3
Mangun, G.R.4
Fries, P.5
Friston, K.J.6
-
5
-
-
84981744898
-
Encoding of stimulus probability in macaque inferior temporal cortex
-
Bell, A. H., Summerfield, C.,Morin, E. L., Malecek, N. J., Ungerleider, L. G. (2016). Encoding of stimulus probability in macaque inferior temporal cortex. Current Biology, 26(17), 2280.
-
(2016)
Current Biology
, vol.26
, Issue.17
, pp. 2280
-
-
Bell, A.H.1
Summerfield, C.2
Morin, E.L.3
Malecek, N.J.4
Ungerleider, L.G.5
-
8
-
-
84937942178
-
-
arXiv:1502.04156.
-
Bengio, Y., Lee, D.-H., Bornschein, J., Lin, Z. (2015). Towards biologically plausible deep learning. arXiv:1502.04156.
-
(2015)
Towards biologically plausible deep learning
-
-
Bengio, Y.1
Lee, D.-H.2
Bornschein, J.3
Lin, Z.4
-
9
-
-
84949908580
-
A tutorial on the free-energy framework for modelling perception and learning
-
Bogacz, R. (2017). A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology, 76, 198-211.
-
(2017)
Journal of Mathematical Psychology
, vol.76
, pp. 198-211
-
-
Bogacz, R.1
-
11
-
-
84980047553
-
Properties of neurons in external globus pallidus can support optimal action selection
-
Bogacz, R., Moraud, E. M., Abdi, A., Magill, P. J., & Baufreton, J. (2016). Properties of neurons in external globus pallidus can support optimal action selection. PLoS Comput. Biol., 12(7), e1005004.
-
(2016)
PLoS Comput. Biol.
, vol.12
, Issue.7
-
-
Bogacz, R.1
Moraud, E.M.2
Abdi, A.3
Magill, P.J.4
Baufreton, J.5
-
12
-
-
0035228401
-
Recognition memory: What are the roles of the perirhinal cortex and hippocampus?
-
Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews Neuroscience, 2(1), 51-61.
-
(2001)
Nature Reviews Neuroscience
, vol.2
, Issue.1
, pp. 51-61
-
-
Brown, M.W.1
Aggleton, J.P.2
-
13
-
-
0004133171
-
-
Mahwah, NJ: Erlbaum.
-
Chauvin, Y., Rumelhart, D. E. (1995). Backpropagation: Theory, architectures, and applications. Mahwah, NJ: Erlbaum.
-
(1995)
Backpropagation: Theory, architectures, and applications
-
-
Chauvin, Y.1
Rumelhart, D.E.2
-
14
-
-
0024490816
-
The recent excitement about neural networks
-
Crick, F. (1989). The recent excitement about neural networks. Nature, 337, 129-132.
-
(1989)
Nature
, vol.337
, pp. 129-132
-
-
Crick, F.1
-
15
-
-
0029372831
-
The Helmholtz machine
-
Dayan, P., Hinton, G. E., Neal, R.M., Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7(5), 889-904.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
17
-
-
79952575205
-
Attention, uncertainty, and free-energy
-
Feldman, H., Friston, K. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215.
-
(2010)
Frontiers in Human Neuroscience
, vol.4
, pp. 215
-
-
Feldman, H.1
Friston, K.2
-
18
-
-
84987624295
-
Experience-dependent spatial expectations inmouse visual cortex
-
Fiser, A.,Mahringer, D., Oyibo, H. K., Petersen, A. V., Leinweber,M., Keller, G. B. (2016). Experience-dependent spatial expectations inmouse visual cortex. Nature Neuroscience, 19, 1658-1664.
-
(2016)
Nature Neuroscience
, vol.19
, pp. 1658-1664
-
-
Fiser, A.1
Mahringer, D.2
Oyibo, H.K.3
Petersen, A.V.4
Leinweber, M.5
Keller, G.B.6
-
19
-
-
0242577959
-
Learning and inference in the brain
-
Friston,K. (2003). Learning and inference in the brain. Neural Networks, 16, 1325-1352.
-
(2003)
Neural Networks
, vol.16
, pp. 1325-1352
-
-
Friston, K.1
-
21
-
-
75549090229
-
The free-energy principle: A unified brain theory?
-
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127-138.
-
(2010)
Nature Reviews Neuroscience
, vol.11
, pp. 127-138
-
-
Friston, K.1
-
22
-
-
77952091673
-
Action and behavior: A free-energy formulation
-
Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological Cybernetics, 102(3), 227-260.
-
(2010)
Biological Cybernetics
, vol.102
, Issue.3
, pp. 227-260
-
-
Friston, K.J.1
Daunizeau, J.2
Kilner, J.3
Kiebel, S.J.4
-
23
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29, 82- 97.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, pp. 82- 97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Kingsbury, B.7
-
24
-
-
0001504852
-
Learning representations by recirculation
-
In D. Z. Anderson (Ed.), New York: American Institute of Physics.
-
Hinton, G. E., & McClelland, J. L. (1988). Learning representations by recirculation. In D. Z. Anderson (Ed.), Neural information processing systems (pp. 358-366). New York: American Institute of Physics.
-
(1988)
Neural information processing systems
, pp. 358-366
-
-
Hinton, G.E.1
McClelland, J.L.2
-
25
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
26
-
-
0033341919
-
Regression using independent component analysis, and its connection to multi-layer perceptrons
-
Stevenage, UK: IEE.
-
Hyvarinen, A. (1999). Regression using independent component analysis, and its connection to multi-layer perceptrons. In Proceedings of the 9th International Conference on Artificial Neural Networks (pp. 491-496). Stevenage, UK: IEE.
-
(1999)
Proceedings of the 9th International Conference on Artificial Neural Networks
, pp. 491-496
-
-
Hyvarinen, A.1
-
28
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
In F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.). Red Hook, NY: Curran.
-
Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1097- 1105). Red Hook, NY: Curran.
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L.D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541-551.
-
(1989)
Neural Computation
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
31
-
-
84994417427
-
Random synaptic feedback weights support error backpropagation for deep learning
-
Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications, 7, 13276.
-
(2016)
Nature Communications
, vol.7
, pp. 13276
-
-
Lillicrap, T.P.1
Cownden, D.2
Tweed, D.B.3
Akerman, C.J.4
-
32
-
-
0025735983
-
A more biologically plausibile learning rule for neural networks
-
Mazzoni, P., Andersen, R. A., & Jordan, M. I. (1991). A more biologically plausibile learning rule for neural networks. Proc. Natl. Acad. Sci. USA, 88, 4433-4437.
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 4433-4437
-
-
Mazzoni, P.1
Andersen, R.A.2
Jordan, M.I.3
-
33
-
-
0029340352
-
Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory
-
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457.
-
(1995)
Psychological Review
, vol.102
, pp. 419-457
-
-
McClelland, J.L.1
McNaughton, B.L.2
O'Reilly, R.C.3
-
34
-
-
0027192354
-
The representation of stimulus familiarity in anterior inferior temporal cortex
-
Miller, L. L., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69(6), 1918-1929.
-
(1993)
Journal of Neurophysiology
, vol.69
, Issue.6
, pp. 1918-1929
-
-
Miller, L.L.1
Desimone, R.2
-
35
-
-
84884143038
-
Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex
-
Mizuseki, K., Buzśaki, G. (2013). Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Reports, 4(5), 1010-1021.
-
(2013)
Cell Reports
, vol.4
, Issue.5
, pp. 1010-1021
-
-
Mizuseki, K.1
Buzśaki, G.2
-
36
-
-
0001569746
-
Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm
-
O'Reilly, R. C. (1998). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8, 895-938.
-
(1998)
Neural Computation
, vol.8
, pp. 895-938
-
-
O'Reilly, R.C.1
-
38
-
-
0029691655
-
Understanding normal and impaired word reading: Computational principles in quasiregular domains
-
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasiregular domains. Psychological Review, 103, 56-115.
-
(1996)
Psychological Review
, vol.103
, pp. 56-115
-
-
Plaut, D.C.1
McClelland, J.L.2
Seidenberg, M.S.3
Patterson, K.4
-
39
-
-
0033360288
-
Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
-
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79-87.
-
(1999)
Nature Neuroscience
, vol.2
, pp. 79-87
-
-
Rao, R.P.N.1
Ballard, D.H.2
-
40
-
-
0002530434
-
Backpropagation: The basic theory
-
In Y. Chauvin & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum.
-
Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backpropagation: The basic theory. In Y. Chauvin & D. E. Rumelhart (Eds.), Backpropagation: Theory, architectures and applications (pp. 1-34). Hillsdale, NJ: Erlbaum.
-
(1995)
Backpropagation: Theory, architectures and applications
, pp. 1-34
-
-
Rumelhart, D.E.1
Durbin, R.2
Golden, R.3
Chauvin, Y.4
-
41
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
43
-
-
0024747015
-
A distributed, developmental model of word recognition and naming
-
Seidenberg, M. S., McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523-568.
-
(1989)
Psychological Review
, vol.96
, pp. 523-568
-
-
Seidenberg, M.S.1
McClelland, J.L.2
-
44
-
-
0347362917
-
Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
-
Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron, 40, 1063-1073.
-
(2003)
Neuron
, vol.40
, pp. 1063-1073
-
-
Seung, H.S.1
-
45
-
-
69749088676
-
Reconciling predictive coding and biased competition models of cortical function
-
Spratling, M.W. (2008). Reconciling predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience, 2, 4.
-
(2008)
Frontiers in Computational Neuroscience
, vol.2
, pp. 4
-
-
Spratling, M.W.1
-
46
-
-
84877724347
-
Multimodal learning with deep boltzmann machines
-
In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran.
-
Srivastava, N., Salakhutdinov, R. (2012). Multimodal learning with deep boltzmann machines. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 2222-2230). Red Hook, NY: Curran.
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 2222-2230
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
47
-
-
33845194013
-
Predictive codes for forthcoming perception in the frontal cortex
-
Summerfield, C., Egner, T., Greene, M., Koechlin, E., Mangels, J., & Hirsch, J. (2006). Predictive codes for forthcoming perception in the frontal cortex. Science, 314, 1311-1314.
-
(2006)
Science
, vol.314
, pp. 1311-1314
-
-
Summerfield, C.1
Egner, T.2
Greene, M.3
Koechlin, E.4
Mangels, J.5
Hirsch, J.6
-
48
-
-
50249162007
-
Neural repetition suppression reflects fulfilled perceptual expectations
-
Summerfield, C., Trittschuh, E. H., Monti, J. M.,Mesulam,M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004-1006.
-
(2008)
Nature Neuroscience
, vol.11
, Issue.9
, pp. 1004-1006
-
-
Summerfield, C.1
Trittschuh, E.H.2
Monti, J.M.3
Mesulam, M.-M.4
Egner, T.5
-
49
-
-
0001682375
-
Alopex: A correlation-based learning algorithm for feedforward and recurrent neural networks
-
Unnikrishnan, K., & Venugopal, K. (1994). Alopex: A correlation-based learning algorithm for feedforward and recurrent neural networks. Neural Computation, 6, 469-490.
-
(1994)
Neural Computation
, vol.6
, pp. 469-490
-
-
Unnikrishnan, K.1
Venugopal, K.2
-
50
-
-
27144462270
-
Learning curves for stochastic gradient descent in linear feedforward networks
-
Werfel, J., Xiew, X., & Seung, H. S. (2005). Learning curves for stochastic gradient descent in linear feedforward networks. Neural Computation, 17, 2699-2718.
-
(2005)
Neural Computation
, vol.17
, pp. 2699-2718
-
-
Werfel, J.1
Xiew, X.2
Seung, H.S.3
-
52
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8, 229-256.
-
(1992)
Machine Learning
, vol.8
, pp. 229-256
-
-
Williams, R.J.1
-
53
-
-
84997191933
-
Mismatch receptive fields in mouse visual cortex
-
Zmarz, P., Keller, G. B. (2016). Mismatch receptive fields in mouse visual cortex. Neuron, 92(4), 766-772.
-
(2016)
Neuron
, vol.92
, Issue.4
, pp. 766-772
-
-
Zmarz, P.1
Keller, G.B.2
|