메뉴 건너뛰기




Volumn 27, Issue 1, 2017, Pages 62-67

View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation

Author keywords

computational neuroscience; face patches; face recognition; Hebbian learning; i theory; invariance; mirror symmetry; Oja's rule; unsupervised learning; ventral stream

Indexed keywords

ANIMAL; BIOLOGICAL MODEL; BRAIN; FACIAL RECOGNITION; HEAD MOVEMENT; LEARNING; MACACA; ORIENTATION; PATTERN RECOGNITION; PHOTOSTIMULATION; PHYSIOLOGY; PROCEDURES; SPATIAL ORIENTATION; VISUAL CORTEX;

EID: 85007478095     PISSN: 09609822     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cub.2016.10.015     Document Type: Article
Times cited : (44)

References (44)
  • 1
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?
    • 1 DiCarlo, J.J., Zoccolan, D., Rust, N.C., How does the brain solve visual object recognition?. Neuron 73 (2012), 415–434.
    • (2012) Neuron , vol.73 , pp. 415-434
    • DiCarlo, J.J.1    Zoccolan, D.2    Rust, N.C.3
  • 3
    • 34247096930 scopus 로고    scopus 로고
    • A feedforward architecture accounts for rapid categorization
    • 3 Serre, T., Oliva, A., Poggio, T., A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104 (2007), 6424–6429.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 6424-6429
    • Serre, T.1    Oliva, A.2    Poggio, T.3
  • 4
    • 48049095974 scopus 로고    scopus 로고
    • Class-based feature matching across unrestricted transformations
    • 4 Bart, E., Ullman, S., Class-based feature matching across unrestricted transformations. IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), 1618–1631.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 1618-1631
    • Bart, E.1    Ullman, S.2
  • 5
    • 84866046868 scopus 로고    scopus 로고
    • Invariant visual object and face recognition: neural and computational bases, and a model, VisNet
    • 5 Rolls, E.T., Invariant visual object and face recognition: neural and computational bases, and a model, VisNet. Front. Comput. Neurosci., 6, 2012, 35.
    • (2012) Front. Comput. Neurosci. , vol.6 , pp. 35
    • Rolls, E.T.1
  • 6
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012), 1106–1114.
    • 6 Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012), 1106–1114.
    • (2012)
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 7
    • 78149355557 scopus 로고    scopus 로고
    • Functional compartmentalization and viewpoint generalization within the macaque face-processing system
    • 7 Freiwald, W.A., Tsao, D.Y., Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330 (2010), 845–851.
    • (2010) Science , vol.330 , pp. 845-851
    • Freiwald, W.A.1    Tsao, D.Y.2
  • 9
    • 31944437943 scopus 로고    scopus 로고
    • A cortical region consisting entirely of face-selective cells
    • 9 Tsao, D.Y., Freiwald, W.A., Tootell, R.B., Livingstone, M.S., A cortical region consisting entirely of face-selective cells. Science 311 (2006), 670–674.
    • (2006) Science , vol.311 , pp. 670-674
    • Tsao, D.Y.1    Freiwald, W.A.2    Tootell, R.B.3    Livingstone, M.S.4
  • 10
    • 79955111556 scopus 로고    scopus 로고
    • fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques
    • 10 Ku, S.P., Tolias, A.S., Logothetis, N.K., Goense, J., fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 70 (2011), 352–362.
    • (2011) Neuron , vol.70 , pp. 352-362
    • Ku, S.P.1    Tolias, A.S.2    Logothetis, N.K.3    Goense, J.4
  • 11
    • 84930227069 scopus 로고    scopus 로고
    • Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination
    • 11 Afraz, A., Boyden, E.S., DiCarlo, J.J., Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc. Natl. Acad. Sci. USA 112 (2015), 6730–6735.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 6730-6735
    • Afraz, A.1    Boyden, E.S.2    DiCarlo, J.J.3
  • 12
    • 45549101401 scopus 로고    scopus 로고
    • Patches with links: a unified system for processing faces in the macaque temporal lobe
    • 12 Moeller, S., Freiwald, W.A., Tsao, D.Y., Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320 (2008), 1355–1359.
    • (2008) Science , vol.320 , pp. 1355-1359
    • Moeller, S.1    Freiwald, W.A.2    Tsao, D.Y.3
  • 13
    • 58049220231 scopus 로고    scopus 로고
    • Comparing face patch systems in macaques and humans
    • 13 Tsao, D.Y., Moeller, S., Freiwald, W.A., Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. USA 105 (2008), 19514–19519.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 19514-19519
    • Tsao, D.Y.1    Moeller, S.2    Freiwald, W.A.3
  • 14
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • 14 Riesenhuber, M., Poggio, T., Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 (1999), 1019–1025.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 15
    • 0025037991 scopus 로고
    • A network that learns to recognize three-dimensional objects
    • 15 Poggio, T., Edelman, S., A network that learns to recognize three-dimensional objects. Nature 343 (1990), 263–266.
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 17
    • 84946068475 scopus 로고    scopus 로고
    • The invariance hypothesis implies domain-specific regions in visual cortex
    • 17 Leibo, J.Z., Liao, Q., Anselmi, F., Poggio, T., The invariance hypothesis implies domain-specific regions in visual cortex. PLoS Comput. Biol., 11, 2015, e1004390.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004390
    • Leibo, J.Z.1    Liao, Q.2    Anselmi, F.3    Poggio, T.4
  • 18
    • 84964614549 scopus 로고    scopus 로고
    • A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans
    • 18 Farzmahdi, A., Rajaei, K., Ghodrati, M., Ebrahimpour, R., Khaligh-Razavi, S.M., A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans. Sci. Rep., 6, 2016, 25025.
    • (2016) Sci. Rep. , vol.6 , pp. 25025
    • Farzmahdi, A.1    Rajaei, K.2    Ghodrati, M.3    Ebrahimpour, R.4    Khaligh-Razavi, S.M.5
  • 19
    • 27644475783 scopus 로고    scopus 로고
    • Fast readout of object identity from macaque inferior temporal cortex
    • 19 Hung, C.P., Kreiman, G., Poggio, T., DiCarlo, J.J., Fast readout of object identity from macaque inferior temporal cortex. Science 310 (2005), 863–866.
    • (2005) Science , vol.310 , pp. 863-866
    • Hung, C.P.1    Kreiman, G.2    Poggio, T.3    DiCarlo, J.J.4
  • 20
    • 84929379035 scopus 로고    scopus 로고
    • Intelligent information loss: the coding of facial identity, head pose, and non-face information in the macaque face patch system
    • 20 Meyers, E.M., Borzello, M., Freiwald, W.A., Tsao, D., Intelligent information loss: the coding of facial identity, head pose, and non-face information in the macaque face patch system. J. Neurosci. 35 (2015), 7069–7081.
    • (2015) J. Neurosci. , vol.35 , pp. 7069-7081
    • Meyers, E.M.1    Borzello, M.2    Freiwald, W.A.3    Tsao, D.4
  • 21
    • 0029895137 scopus 로고    scopus 로고
    • Speed of processing in the human visual system
    • 21 Thorpe, S., Fize, D., Marlot, C., Speed of processing in the human visual system. Nature 381 (1996), 520–522.
    • (1996) Nature , vol.381 , pp. 520-522
    • Thorpe, S.1    Fize, D.2    Marlot, C.3
  • 22
    • 84891540069 scopus 로고    scopus 로고
    • The dynamics of invariant object recognition in the human visual system
    • 22 Isik, L., Meyers, E.M., Leibo, J.Z., Poggio, T., The dynamics of invariant object recognition in the human visual system. J. Neurophysiol. 111 (2014), 91–102.
    • (2014) J. Neurophysiol. , vol.111 , pp. 91-102
    • Isik, L.1    Meyers, E.M.2    Leibo, J.Z.3    Poggio, T.4
  • 23
    • 85004809751 scopus 로고
    • Understanding face recognition
    • 23 Bruce, V., Young, A., Understanding face recognition. Br. J. Psychol. 77 (1986), 305–327.
    • (1986) Br. J. Psychol. , vol.77 , pp. 305-327
    • Bruce, V.1    Young, A.2
  • 24
    • 85009065724 scopus 로고    scopus 로고
    • Neural tuning size in a model of primate visual processing accounts for three key markers of holistic face processing
    • 24 Tan, C., Poggio, T., Neural tuning size in a model of primate visual processing accounts for three key markers of holistic face processing. PLoS ONE, 11, 2016, e0150980.
    • (2016) PLoS ONE , vol.11 , pp. e0150980
    • Tan, C.1    Poggio, T.2
  • 25
    • 0022014331 scopus 로고
    • Spatiotemporal energy models for the perception of motion
    • 25 Adelson, E.H., Bergen, J.R., Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2 (1985), 284–299.
    • (1985) J. Opt. Soc. Am. A , vol.2 , pp. 284-299
    • Adelson, E.H.1    Bergen, J.R.2
  • 26
    • 84964358644 scopus 로고    scopus 로고
    • Learning and disrupting invariance in visual recognition with a temporal association rule
    • 26 Isik, L., Leibo, J.Z., Poggio, T., Learning and disrupting invariance in visual recognition with a temporal association rule. Front. Comput. Neurosci., 6, 2012, 37.
    • (2012) Front. Comput. Neurosci. , vol.6 , pp. 37
    • Isik, L.1    Leibo, J.Z.2    Poggio, T.3
  • 27
    • 85009099805 scopus 로고
    • An unsupervised learning procedure that discovers surfaces in random-dot stereograms. In Proceedings of the IEEE/INNS International Joint Conference on Neural Networks 1, 218–222.
    • 27 Hinton, G.E., and Becker, S. (1990). An unsupervised learning procedure that discovers surfaces in random-dot stereograms. In Proceedings of the IEEE/INNS International Joint Conference on Neural Networks 1, 218–222.
    • (1990)
    • Hinton, G.E.1    Becker, S.2
  • 28
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • 28 Földiák, P., Learning invariance from transformation sequences. Neural Comput. 3 (1991), 194–200.
    • (1991) Neural Comput. , vol.3 , pp. 194-200
    • Földiák, P.1
  • 29
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: unsupervised learning of invariances
    • 29 Wiskott, L., Sejnowski, T.J., Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14 (2002), 715–770.
    • (2002) Neural Comput. , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 30
    • 70349705656 scopus 로고    scopus 로고
    • A structured model of video reproduces primary visual cortical organisation
    • 30 Berkes, P., Turner, R.E., Sahani, M., A structured model of video reproduces primary visual cortical organisation. PLoS Comput. Biol., 5, 2009, e1000495.
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000495
    • Berkes, P.1    Turner, R.E.2    Sahani, M.3
  • 31
    • 0023812211 scopus 로고
    • Neuronal correlate of visual associative long-term memory in the primate temporal cortex
    • 31 Miyashita, Y., Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335 (1988), 817–820.
    • (1988) Nature , vol.335 , pp. 817-820
    • Miyashita, Y.1
  • 32
    • 0035836774 scopus 로고    scopus 로고
    • Effects of temporal association on recognition memory
    • 32 Wallis, G., Bülthoff, H.H., Effects of temporal association on recognition memory. Proc. Natl. Acad. Sci. USA 98 (2001), 4800–4804.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 4800-4804
    • Wallis, G.1    Bülthoff, H.H.2
  • 33
    • 27744553420 scopus 로고    scopus 로고
    • ‘Breaking’ position-invariant object recognition
    • 33 Cox, D.D., Meier, P., Oertelt, N., DiCarlo, J.J., ‘Breaking’ position-invariant object recognition. Nat. Neurosci. 8 (2005), 1145–1147.
    • (2005) Nat. Neurosci. , vol.8 , pp. 1145-1147
    • Cox, D.D.1    Meier, P.2    Oertelt, N.3    DiCarlo, J.J.4
  • 34
    • 77957009642 scopus 로고    scopus 로고
    • Unsupervised natural visual experience rapidly reshapes size-invariant object representation in inferior temporal cortex
    • 34 Li, N., DiCarlo, J.J., Unsupervised natural visual experience rapidly reshapes size-invariant object representation in inferior temporal cortex. Neuron 67 (2010), 1062–1075.
    • (2010) Neuron , vol.67 , pp. 1062-1075
    • Li, N.1    DiCarlo, J.J.2
  • 35
    • 85009130161 scopus 로고    scopus 로고
    • On invariance and selectivity in representation learning. arXiv, arXiv:1503.05938
    • 35 Anselmi, F., Rosasco, L., and Poggio, T. (2015). On invariance and selectivity in representation learning. arXiv, arXiv:1503.05938, http://arxiv.org/abs/1503.05938.
    • (2015)
    • Anselmi, F.1    Rosasco, L.2    Poggio, T.3
  • 36
    • 0003591521 scopus 로고
    • Fundamentals of Artificial Neural Networks
    • MIT Press
    • 36 Hassoun, M.H., Fundamentals of Artificial Neural Networks. 1995, MIT Press.
    • (1995)
    • Hassoun, M.H.1
  • 37
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • 37 Oja, E., A simplified neuron model as a principal component analyzer. J. Math. Biol. 15 (1982), 267–273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 38
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • 38 Oja, E., Principal components, minor components, and linear neural networks. Neural Netw. 5 (1992), 927–935.
    • (1992) Neural Netw. , vol.5 , pp. 927-935
    • Oja, E.1
  • 39
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: taming the beast
    • 39 Abbott, L.F., Nelson, S.B., Synaptic plasticity: taming the beast. Nat. Neurosci. 3 (2000), 1178–1183.
    • (2000) Nat. Neurosci. , vol.3 , pp. 1178-1183
    • Abbott, L.F.1    Nelson, S.B.2
  • 40
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • 40 Sanger, T.D., Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2 (1989), 459–473.
    • (1989) Neural Netw. , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 41
    • 84885734405 scopus 로고    scopus 로고
    • Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
    • 41 Keck, T., Keller, G.B., Jacobsen, R.I., Eysel, U.T., Bonhoeffer, T., Hübener, M., Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80 (2013), 327–334.
    • (2013) Neuron , vol.80 , pp. 327-334
    • Keck, T.1    Keller, G.B.2    Jacobsen, R.I.3    Eysel, U.T.4    Bonhoeffer, T.5    Hübener, M.6
  • 42
    • 84885699348 scopus 로고    scopus 로고
    • Firing rate homeostasis in visual cortex of freely behaving rodents
    • 42 Hengen, K.B., Lambo, M.E., Van Hooser, S.D., Katz, D.B., Turrigiano, G.G., Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80 (2013), 335–342.
    • (2013) Neuron , vol.80 , pp. 335-342
    • Hengen, K.B.1    Lambo, M.E.2    Van Hooser, S.D.3    Katz, D.B.4    Turrigiano, G.G.5
  • 43
    • 0742323527 scopus 로고    scopus 로고
    • Homeostatic plasticity in the developing nervous system
    • 43 Turrigiano, G.G., Nelson, S.B., Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5 (2004), 97–107.
    • (2004) Nat. Rev. Neurosci. , vol.5 , pp. 97-107
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 44
    • 85009140975 scopus 로고    scopus 로고
    • Efficient and robust analysis-by-synthesis in vision: a computational framework, behavioral tests, and modeling neuronal representations. In Proceedings of the Annual Conference of the Cognitive Science Society.
    • 44 Yildirim, I., Kulkarni, T.D., Freiwald, W.A., and Tenenbaum, J.B. (2015). Efficient and robust analysis-by-synthesis in vision: a computational framework, behavioral tests, and modeling neuronal representations. In Proceedings of the Annual Conference of the Cognitive Science Society.
    • (2015)
    • Yildirim, I.1    Kulkarni, T.D.2    Freiwald, W.A.3    Tenenbaum, J.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.