-
1
-
-
84987781487
-
Targeting the cancer epigenome for therapy
-
Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630-41.
-
(2016)
Nat Rev Genet
, vol.17
, pp. 630-641
-
-
Jones, P.A.1
Issa, J.-P.2
Baylin, S.3
-
3
-
-
85024400356
-
The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome
-
Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017;15:133.
-
(2017)
BMC Med
, vol.15
, pp. 133
-
-
Caswell, D.R.1
Swanton, C.2
-
4
-
-
0344441236
-
Towards genetic prediction of radiation responses: ESTRO's GENEPI project
-
Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO's GENEPI project. Radiother Oncol. 2003;69:121-5.
-
(2003)
Radiother Oncol
, vol.69
, pp. 121-125
-
-
Baumann, M.1
Hölscher, T.2
Begg, A.C.3
-
5
-
-
67349122032
-
Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging
-
Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232-41.
-
(2009)
Eur J Radiol
, vol.70
, pp. 232-241
-
-
Rutman, A.M.1
Kuo, M.D.2
-
6
-
-
34250195010
-
Decoding global gene expression programs in liver cancer by noninvasive imaging
-
Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675-80.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 675-680
-
-
Segal, E.1
Sirlin, C.B.2
Ooi, C.3
-
7
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-92.
-
(2012)
N Engl J Med
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
Rowan, A.J.2
Horswell, S.3
-
8
-
-
84950342049
-
Cancer Gene Profiling for Response Prediction
-
Ghadimi BM, Jo P. Cancer Gene Profiling for Response Prediction. Methods Mol Biol. 2016;1381:163-79. doi: 10.1007/978-1-4939-3204-7_9.
-
(2016)
Methods Mol Biol.
, vol.1381
, pp. 163-179
-
-
Ghadimi, B.M.1
Jo, P.2
-
9
-
-
84884685636
-
Quantitative imaging in cancer evolution and ecology
-
Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269:8-14.
-
(2013)
Radiology
, vol.269
, pp. 8-14
-
-
Gatenby, R.A.1
Grove, O.2
Gillies, R.J.3
-
10
-
-
84884365015
-
The causes and consequences of genetic heterogeneity in cancer evolution
-
Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338.
-
(2013)
Nature
, vol.501
, pp. 338
-
-
Burrell, R.A.1
McGranahan, N.2
Bartek, J.3
-
11
-
-
85033231331
-
Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas
-
Huo D, Hu H, Rhie SK, et al. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. 2017. doi: 10.1001/jamaoncol.2017.0595.
-
(2017)
JAMA Oncol
-
-
Huo, D.1
Hu, H.2
Rhie, S.K.3
-
12
-
-
85019027650
-
High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis
-
Hartmaier RJ, Albacker L, Chmielecki J et al. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res. 2017.
-
(2017)
Cancer Res
-
-
Hartmaier, R.J.1
Albacker, L.2
Chmielecki, J.3
-
13
-
-
85019001567
-
Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities
-
Gutierrez ME, Choi K, Lanman RB et al. Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer. 2017.
-
(2017)
Clin Lung Cancer
-
-
Gutierrez, M.E.1
Choi, K.2
Lanman, R.B.3
-
14
-
-
84857037061
-
Radiomics: extracting more information from medical images using advanced feature analysis
-
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441-6.
-
(2012)
Eur J Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
-
15
-
-
84907210158
-
Integrating radio imaging with gene expressions toward a personalized management of cancer
-
Mitra S, Shankar BU. Integrating radio imaging with gene expressions toward a personalized management of cancer. IEEE Trans Human-Mach Syst. 2014;44:664-77.
-
(2014)
IEEE Trans Human-Mach Syst
, vol.44
, pp. 664-677
-
-
Mitra, S.1
Shankar, B.U.2
-
16
-
-
84867139157
-
Radiomics: the process and the challenges
-
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234-48.
-
(2012)
Magn Reson Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
-
17
-
-
84962314053
-
Reproducibility of radiomics for deciphering tumor phenotype with imaging
-
Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
-
(2016)
Sci Rep
, vol.6
, pp. 23428
-
-
Zhao, B.1
Tan, Y.2
Tsai, W.-Y.3
-
18
-
-
84943774122
-
Measuring CT scanner variability of radiomics features
-
Mackin D, Fave X, Zhang L, et al. Measuring CT scanner variability of radiomics features. Investig Radiol. 2015;50:757.
-
(2015)
Investig Radiol
, vol.50
, pp. 757
-
-
Mackin, D.1
Fave, X.2
Zhang, L.3
-
19
-
-
84949801178
-
Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer
-
Oliver JA, Budzevich M, Zhang GG, et al. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8:524-34.
-
(2015)
Transl Oncol
, vol.8
, pp. 524-534
-
-
Oliver, J.A.1
Budzevich, M.2
Zhang, G.G.3
-
20
-
-
84975268143
-
The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management
-
Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209-62.
-
(2016)
Med Phys
, vol.43
, pp. 4209-4262
-
-
Huq, M.S.1
Fraass, B.A.2
Dunscombe, P.B.3
-
21
-
-
79959326227
-
Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review
-
Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol. 2011;2011:732848.
-
(2011)
J Biomed Biotechnol.
, vol.2011
, pp. 732848
-
-
Yang, X.1
Knopp, M.V.2
-
22
-
-
34249874331
-
Diffusion-weighted MRI in the body: applications and challenges in oncology
-
Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622-35.
-
(2007)
Am J Roentgenol
, vol.188
, pp. 1622-1635
-
-
Koh, D.-M.1
Collins, D.J.2
-
23
-
-
84975698783
-
Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation
-
van Velden FH, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788-95.
-
(2016)
Mol Imaging Biol
, vol.18
, pp. 788-795
-
-
Velden, F.H.1
Kramer, G.M.2
Frings, V.3
-
24
-
-
84913525860
-
The role of quantitative PET in predicting cancer treatment outcomes
-
El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2:305-20.
-
(2014)
Clin Transl Imaging
, vol.2
, pp. 305-320
-
-
Naqa, I.1
-
25
-
-
41949092259
-
The integration of PET-CT scans from different hospitals into radiotherapy treatment planning
-
Öllers M, Bosmans G, van Baardwijk A, et al. The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol. 2008;87:142-6.
-
(2008)
Radiother Oncol
, vol.87
, pp. 142-146
-
-
Öllers, M.1
Bosmans, G.2
Baardwijk, A.3
-
26
-
-
84886391826
-
Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study
-
Coenen A, Honda O, van der Jagt EJ, et al. Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study. Jpn J Radiol. 2013;31:677-84.
-
(2013)
Jpn J Radiol
, vol.31
, pp. 677-684
-
-
Coenen, A.1
Honda, O.2
Jagt, E.J.3
-
27
-
-
84904248018
-
Robust radiomics feature quantification using semiautomatic volumetric segmentation
-
Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.
-
(2014)
PLoS One
, vol.9
-
-
Parmar, C.1
Velazquez, E.R.2
Leijenaar, R.3
-
28
-
-
84941420890
-
Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
-
Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840-50.
-
(2015)
Eur Radiol
, vol.25
, pp. 2840-2850
-
-
Wibmer, A.1
Hricak, H.2
Gondo, T.3
-
30
-
-
84939498419
-
Machine learning methods for quantitative radiomic biomarkers
-
Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.
-
(2015)
Sci Rep
, vol.5
, pp. 13087
-
-
Parmar, C.1
Grossmann, P.2
Bussink, J.3
-
31
-
-
84955604605
-
Radiomics: images are more than pictures, they are data
-
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563-77.
-
(2015)
Radiology
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
32
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
-
(2014)
Nat Commun
, vol.5
, pp. 4006
-
-
Aerts, H.J.1
Velazquez, E.R.2
Leijenaar, R.T.3
-
33
-
-
84867139116
-
Informatics methods to enable sharing of quantitative imaging research data
-
Levy MA, Freymann JB, Kirby JS, et al. Informatics methods to enable sharing of quantitative imaging research data. Magn Reson Imaging. 2012;30:1249-56.
-
(2012)
Magn Reson Imaging
, vol.30
, pp. 1249-1256
-
-
Levy, M.A.1
Freymann, J.B.2
Kirby, J.S.3
-
35
-
-
85010817811
-
Predicting malignant nodules from screening CT scans
-
Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120-8.
-
(2016)
J Thorac Oncol
, vol.11
, pp. 2120-2128
-
-
Hawkins, S.1
Wang, H.2
Liu, Y.3
-
36
-
-
84871475802
-
Overview and strategic management of subsolid pulmonary nodules
-
Godoy MC, Naidich DP. Overview and strategic management of subsolid pulmonary nodules. J Thorac Imaging. 2012;27:240-8.
-
(2012)
J Thorac Imaging
, vol.27
, pp. 240-248
-
-
Godoy, M.C.1
Naidich, D.P.2
-
37
-
-
84896999769
-
Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study
-
Lee SH, Lee SM, Goo JM, et al. Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study. PLoS One. 2014;9:e85167.
-
(2014)
PLoS One
, vol.9
-
-
Lee, S.H.1
Lee, S.M.2
Goo, J.M.3
-
38
-
-
84908701490
-
Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas
-
Chae H-D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273:285-93.
-
(2014)
Radiology
, vol.273
, pp. 285-293
-
-
Chae, H.-D.1
Park, C.M.2
Park, S.J.3
-
39
-
-
84964417455
-
Exploratory study to identify radiomics classifiers for lung cancer histology
-
Wu W, Parmar C, Grossmann P et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016; 6.
-
(2016)
Front Oncol
, pp. 6
-
-
Wu, W.1
Parmar, C.2
Grossmann, P.3
-
40
-
-
84995773041
-
Management of EGFR mutation-positive non-small cell lung cancer
-
Lilenbaum RA, Horn LA. Management of EGFR mutation-positive non-small cell lung cancer. J Natl Compr Cancer Netw. 2016;14:672-4.
-
(2016)
J Natl Compr Cancer Netw
, vol.14
, pp. 672-674
-
-
Lilenbaum, R.A.1
Horn, L.A.2
-
41
-
-
84962614999
-
Radiomic features are associated with EGFR mutation status in lung adenocarcinomas
-
Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clinical lung cancer. 2016;17:441-8. e446
-
(2016)
Clinical lung cancer
, vol.17
, pp. 441-448
-
-
Liu, Y.1
Kim, J.2
Balagurunathan, Y.3
-
42
-
-
84903770590
-
Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic
-
Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One. 2014;9:e100244.
-
(2014)
PLoS One
, vol.9
-
-
Weiss, G.J.1
Ganeshan, B.2
Miles, K.A.3
-
43
-
-
84944459873
-
Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach
-
Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine. 2015;94:e1753.
-
(2015)
Medicine
, vol.94
-
-
Yoon, H.J.1
Sohn, I.2
Cho, J.H.3
-
44
-
-
84938850455
-
Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
-
srep11044
-
Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5:srep11044.
-
(2015)
Sci Rep
, vol.5
-
-
Parmar, C.1
Leijenaar, R.T.2
Grossmann, P.3
-
45
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114:345-50.
-
(2015)
Radiother Oncol
, vol.114
, pp. 345-350
-
-
Coroller, T.P.1
Grossmann, P.2
Hou, Y.3
-
46
-
-
84964335379
-
Radiomic phenotype features predict pathological response in non-small cell lung cancer
-
Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119:480-6.
-
(2016)
Radiother Oncol
, vol.119
, pp. 480-486
-
-
Coroller, T.P.1
Agrawal, V.2
Narayan, V.3
-
47
-
-
84969326691
-
Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment
-
Mattonen SA, Palma DA, Johnson C, et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94:1121-8.
-
(2016)
Int J Radiat Oncol Biol Phys
, vol.94
, pp. 1121-1128
-
-
Mattonen, S.A.1
Palma, D.A.2
Johnson, C.3
-
48
-
-
84946483116
-
CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage
-
Defraene G, van Elmpt W, Crijns W, et al. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29-35.
-
(2015)
Radiother Oncol
, vol.117
, pp. 29-35
-
-
Defraene, G.1
Elmpt, W.2
Crijns, W.3
-
49
-
-
84946473868
-
A new CT-based method to quantify radiation-induced lung damage in patients
-
Ghobadi G, Wiegman EM, Langendijk JA, et al. A new CT-based method to quantify radiation-induced lung damage in patients. Radiother Oncol. 2015;117:4-8.
-
(2015)
Radiother Oncol
, vol.117
, pp. 4-8
-
-
Ghobadi, G.1
Wiegman, E.M.2
Langendijk, J.A.3
-
50
-
-
85020674881
-
Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy
-
Moran A, Daly ME, Yip SSF et al. Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clin Lung Cancer. 2017. doi: 10.1016/j.cllc.2017.05.014.
-
(2017)
Clin Lung Cancer
-
-
Moran, A.1
Daly, M.E.2
Yip, S.S.F.3
-
51
-
-
85021373375
-
Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy
-
Li Q, Kim J, Balagurunathan Y et al. Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy. Med Phys. 2017.
-
(2017)
Med Phys
-
-
Li, Q.1
Kim, J.2
Balagurunathan, Y.3
-
52
-
-
85008178682
-
Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT
-
Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12:e0169172.
-
(2017)
PLoS One
, vol.12
-
-
Huynh, E.1
Coroller, T.P.2
Narayan, V.3
|