메뉴 건너뛰기




Volumn 12, Issue 1, 2017, Pages

Development and clinical application of radiomics in lung cancer

Author keywords

Lung cancer; Phenotype; Pulmonary nodule; Radiomics

Indexed keywords

FLUORODEOXYGLUCOSE F 18;

EID: 85029539428     PISSN: None     EISSN: 1748717X     Source Type: Journal    
DOI: 10.1186/s13014-017-0885-x     Document Type: Review
Times cited : (80)

References (52)
  • 1
    • 84987781487 scopus 로고    scopus 로고
    • Targeting the cancer epigenome for therapy
    • Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630-41.
    • (2016) Nat Rev Genet , vol.17 , pp. 630-641
    • Jones, P.A.1    Issa, J.-P.2    Baylin, S.3
  • 3
    • 85024400356 scopus 로고    scopus 로고
    • The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome
    • Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017;15:133.
    • (2017) BMC Med , vol.15 , pp. 133
    • Caswell, D.R.1    Swanton, C.2
  • 4
    • 0344441236 scopus 로고    scopus 로고
    • Towards genetic prediction of radiation responses: ESTRO's GENEPI project
    • Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO's GENEPI project. Radiother Oncol. 2003;69:121-5.
    • (2003) Radiother Oncol , vol.69 , pp. 121-125
    • Baumann, M.1    Hölscher, T.2    Begg, A.C.3
  • 5
    • 67349122032 scopus 로고    scopus 로고
    • Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging
    • Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232-41.
    • (2009) Eur J Radiol , vol.70 , pp. 232-241
    • Rutman, A.M.1    Kuo, M.D.2
  • 6
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675-80.
    • (2007) Nat Biotechnol , vol.25 , pp. 675-680
    • Segal, E.1    Sirlin, C.B.2    Ooi, C.3
  • 7
    • 84863393080 scopus 로고    scopus 로고
    • Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
    • Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-92.
    • (2012) N Engl J Med , vol.366 , pp. 883-892
    • Gerlinger, M.1    Rowan, A.J.2    Horswell, S.3
  • 8
    • 84950342049 scopus 로고    scopus 로고
    • Cancer Gene Profiling for Response Prediction
    • Ghadimi BM, Jo P. Cancer Gene Profiling for Response Prediction. Methods Mol Biol. 2016;1381:163-79. doi: 10.1007/978-1-4939-3204-7_9.
    • (2016) Methods Mol Biol. , vol.1381 , pp. 163-179
    • Ghadimi, B.M.1    Jo, P.2
  • 9
    • 84884685636 scopus 로고    scopus 로고
    • Quantitative imaging in cancer evolution and ecology
    • Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269:8-14.
    • (2013) Radiology , vol.269 , pp. 8-14
    • Gatenby, R.A.1    Grove, O.2    Gillies, R.J.3
  • 10
    • 84884365015 scopus 로고    scopus 로고
    • The causes and consequences of genetic heterogeneity in cancer evolution
    • Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338.
    • (2013) Nature , vol.501 , pp. 338
    • Burrell, R.A.1    McGranahan, N.2    Bartek, J.3
  • 11
    • 85033231331 scopus 로고    scopus 로고
    • Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas
    • Huo D, Hu H, Rhie SK, et al. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. 2017. doi: 10.1001/jamaoncol.2017.0595.
    • (2017) JAMA Oncol
    • Huo, D.1    Hu, H.2    Rhie, S.K.3
  • 12
    • 85019027650 scopus 로고    scopus 로고
    • High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis
    • Hartmaier RJ, Albacker L, Chmielecki J et al. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res. 2017.
    • (2017) Cancer Res
    • Hartmaier, R.J.1    Albacker, L.2    Chmielecki, J.3
  • 13
    • 85019001567 scopus 로고    scopus 로고
    • Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities
    • Gutierrez ME, Choi K, Lanman RB et al. Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer. 2017.
    • (2017) Clin Lung Cancer
    • Gutierrez, M.E.1    Choi, K.2    Lanman, R.B.3
  • 14
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441-6.
    • (2012) Eur J Cancer , vol.48 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 15
    • 84907210158 scopus 로고    scopus 로고
    • Integrating radio imaging with gene expressions toward a personalized management of cancer
    • Mitra S, Shankar BU. Integrating radio imaging with gene expressions toward a personalized management of cancer. IEEE Trans Human-Mach Syst. 2014;44:664-77.
    • (2014) IEEE Trans Human-Mach Syst , vol.44 , pp. 664-677
    • Mitra, S.1    Shankar, B.U.2
  • 16
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: the process and the challenges
    • Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234-48.
    • (2012) Magn Reson Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 17
    • 84962314053 scopus 로고    scopus 로고
    • Reproducibility of radiomics for deciphering tumor phenotype with imaging
    • Zhao B, Tan Y, Tsai W-Y, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
    • (2016) Sci Rep , vol.6 , pp. 23428
    • Zhao, B.1    Tan, Y.2    Tsai, W.-Y.3
  • 18
    • 84943774122 scopus 로고    scopus 로고
    • Measuring CT scanner variability of radiomics features
    • Mackin D, Fave X, Zhang L, et al. Measuring CT scanner variability of radiomics features. Investig Radiol. 2015;50:757.
    • (2015) Investig Radiol , vol.50 , pp. 757
    • Mackin, D.1    Fave, X.2    Zhang, L.3
  • 19
    • 84949801178 scopus 로고    scopus 로고
    • Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer
    • Oliver JA, Budzevich M, Zhang GG, et al. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8:524-34.
    • (2015) Transl Oncol , vol.8 , pp. 524-534
    • Oliver, J.A.1    Budzevich, M.2    Zhang, G.G.3
  • 20
    • 84975268143 scopus 로고    scopus 로고
    • The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management
    • Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209-62.
    • (2016) Med Phys , vol.43 , pp. 4209-4262
    • Huq, M.S.1    Fraass, B.A.2    Dunscombe, P.B.3
  • 21
    • 79959326227 scopus 로고    scopus 로고
    • Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review
    • Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol. 2011;2011:732848.
    • (2011) J Biomed Biotechnol. , vol.2011 , pp. 732848
    • Yang, X.1    Knopp, M.V.2
  • 22
    • 34249874331 scopus 로고    scopus 로고
    • Diffusion-weighted MRI in the body: applications and challenges in oncology
    • Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622-35.
    • (2007) Am J Roentgenol , vol.188 , pp. 1622-1635
    • Koh, D.-M.1    Collins, D.J.2
  • 23
    • 84975698783 scopus 로고    scopus 로고
    • Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation
    • van Velden FH, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788-95.
    • (2016) Mol Imaging Biol , vol.18 , pp. 788-795
    • Velden, F.H.1    Kramer, G.M.2    Frings, V.3
  • 24
    • 84913525860 scopus 로고    scopus 로고
    • The role of quantitative PET in predicting cancer treatment outcomes
    • El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2:305-20.
    • (2014) Clin Transl Imaging , vol.2 , pp. 305-320
    • Naqa, I.1
  • 25
    • 41949092259 scopus 로고    scopus 로고
    • The integration of PET-CT scans from different hospitals into radiotherapy treatment planning
    • Öllers M, Bosmans G, van Baardwijk A, et al. The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol. 2008;87:142-6.
    • (2008) Radiother Oncol , vol.87 , pp. 142-146
    • Öllers, M.1    Bosmans, G.2    Baardwijk, A.3
  • 26
    • 84886391826 scopus 로고    scopus 로고
    • Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study
    • Coenen A, Honda O, van der Jagt EJ, et al. Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study. Jpn J Radiol. 2013;31:677-84.
    • (2013) Jpn J Radiol , vol.31 , pp. 677-684
    • Coenen, A.1    Honda, O.2    Jagt, E.J.3
  • 27
    • 84904248018 scopus 로고    scopus 로고
    • Robust radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.
    • (2014) PLoS One , vol.9
    • Parmar, C.1    Velazquez, E.R.2    Leijenaar, R.3
  • 28
    • 84941420890 scopus 로고    scopus 로고
    • Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
    • Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840-50.
    • (2015) Eur Radiol , vol.25 , pp. 2840-2850
    • Wibmer, A.1    Hricak, H.2    Gondo, T.3
  • 30
    • 84939498419 scopus 로고    scopus 로고
    • Machine learning methods for quantitative radiomic biomarkers
    • Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.
    • (2015) Sci Rep , vol.5 , pp. 13087
    • Parmar, C.1    Grossmann, P.2    Bussink, J.3
  • 31
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: images are more than pictures, they are data
    • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563-77.
    • (2015) Radiology , vol.278 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 32
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
    • (2014) Nat Commun , vol.5 , pp. 4006
    • Aerts, H.J.1    Velazquez, E.R.2    Leijenaar, R.T.3
  • 33
    • 84867139116 scopus 로고    scopus 로고
    • Informatics methods to enable sharing of quantitative imaging research data
    • Levy MA, Freymann JB, Kirby JS, et al. Informatics methods to enable sharing of quantitative imaging research data. Magn Reson Imaging. 2012;30:1249-56.
    • (2012) Magn Reson Imaging , vol.30 , pp. 1249-1256
    • Levy, M.A.1    Freymann, J.B.2    Kirby, J.S.3
  • 35
    • 85010817811 scopus 로고    scopus 로고
    • Predicting malignant nodules from screening CT scans
    • Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120-8.
    • (2016) J Thorac Oncol , vol.11 , pp. 2120-2128
    • Hawkins, S.1    Wang, H.2    Liu, Y.3
  • 36
    • 84871475802 scopus 로고    scopus 로고
    • Overview and strategic management of subsolid pulmonary nodules
    • Godoy MC, Naidich DP. Overview and strategic management of subsolid pulmonary nodules. J Thorac Imaging. 2012;27:240-8.
    • (2012) J Thorac Imaging , vol.27 , pp. 240-248
    • Godoy, M.C.1    Naidich, D.P.2
  • 37
    • 84896999769 scopus 로고    scopus 로고
    • Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study
    • Lee SH, Lee SM, Goo JM, et al. Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study. PLoS One. 2014;9:e85167.
    • (2014) PLoS One , vol.9
    • Lee, S.H.1    Lee, S.M.2    Goo, J.M.3
  • 38
    • 84908701490 scopus 로고    scopus 로고
    • Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas
    • Chae H-D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273:285-93.
    • (2014) Radiology , vol.273 , pp. 285-293
    • Chae, H.-D.1    Park, C.M.2    Park, S.J.3
  • 39
    • 84964417455 scopus 로고    scopus 로고
    • Exploratory study to identify radiomics classifiers for lung cancer histology
    • Wu W, Parmar C, Grossmann P et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016; 6.
    • (2016) Front Oncol , pp. 6
    • Wu, W.1    Parmar, C.2    Grossmann, P.3
  • 40
    • 84995773041 scopus 로고    scopus 로고
    • Management of EGFR mutation-positive non-small cell lung cancer
    • Lilenbaum RA, Horn LA. Management of EGFR mutation-positive non-small cell lung cancer. J Natl Compr Cancer Netw. 2016;14:672-4.
    • (2016) J Natl Compr Cancer Netw , vol.14 , pp. 672-674
    • Lilenbaum, R.A.1    Horn, L.A.2
  • 41
    • 84962614999 scopus 로고    scopus 로고
    • Radiomic features are associated with EGFR mutation status in lung adenocarcinomas
    • Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clinical lung cancer. 2016;17:441-8. e446
    • (2016) Clinical lung cancer , vol.17 , pp. 441-448
    • Liu, Y.1    Kim, J.2    Balagurunathan, Y.3
  • 42
    • 84903770590 scopus 로고    scopus 로고
    • Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic
    • Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One. 2014;9:e100244.
    • (2014) PLoS One , vol.9
    • Weiss, G.J.1    Ganeshan, B.2    Miles, K.A.3
  • 43
    • 84944459873 scopus 로고    scopus 로고
    • Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach
    • Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine. 2015;94:e1753.
    • (2015) Medicine , vol.94
    • Yoon, H.J.1    Sohn, I.2    Cho, J.H.3
  • 44
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
    • srep11044
    • Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5:srep11044.
    • (2015) Sci Rep , vol.5
    • Parmar, C.1    Leijenaar, R.T.2    Grossmann, P.3
  • 45
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114:345-50.
    • (2015) Radiother Oncol , vol.114 , pp. 345-350
    • Coroller, T.P.1    Grossmann, P.2    Hou, Y.3
  • 46
    • 84964335379 scopus 로고    scopus 로고
    • Radiomic phenotype features predict pathological response in non-small cell lung cancer
    • Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119:480-6.
    • (2016) Radiother Oncol , vol.119 , pp. 480-486
    • Coroller, T.P.1    Agrawal, V.2    Narayan, V.3
  • 47
    • 84969326691 scopus 로고    scopus 로고
    • Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment
    • Mattonen SA, Palma DA, Johnson C, et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94:1121-8.
    • (2016) Int J Radiat Oncol Biol Phys , vol.94 , pp. 1121-1128
    • Mattonen, S.A.1    Palma, D.A.2    Johnson, C.3
  • 48
    • 84946483116 scopus 로고    scopus 로고
    • CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage
    • Defraene G, van Elmpt W, Crijns W, et al. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29-35.
    • (2015) Radiother Oncol , vol.117 , pp. 29-35
    • Defraene, G.1    Elmpt, W.2    Crijns, W.3
  • 49
    • 84946473868 scopus 로고    scopus 로고
    • A new CT-based method to quantify radiation-induced lung damage in patients
    • Ghobadi G, Wiegman EM, Langendijk JA, et al. A new CT-based method to quantify radiation-induced lung damage in patients. Radiother Oncol. 2015;117:4-8.
    • (2015) Radiother Oncol , vol.117 , pp. 4-8
    • Ghobadi, G.1    Wiegman, E.M.2    Langendijk, J.A.3
  • 50
    • 85020674881 scopus 로고    scopus 로고
    • Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy
    • Moran A, Daly ME, Yip SSF et al. Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clin Lung Cancer. 2017. doi: 10.1016/j.cllc.2017.05.014.
    • (2017) Clin Lung Cancer
    • Moran, A.1    Daly, M.E.2    Yip, S.S.F.3
  • 51
    • 85021373375 scopus 로고    scopus 로고
    • Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy
    • Li Q, Kim J, Balagurunathan Y et al. Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy. Med Phys. 2017.
    • (2017) Med Phys
    • Li, Q.1    Kim, J.2    Balagurunathan, Y.3
  • 52
    • 85008178682 scopus 로고    scopus 로고
    • Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT
    • Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12:e0169172.
    • (2017) PLoS One , vol.12
    • Huynh, E.1    Coroller, T.P.2    Narayan, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.