메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Reproducibility of radiomics for deciphering tumor phenotype with imaging

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; COMPUTER ASSISTED DIAGNOSIS; DIAGNOSTIC IMAGING; HUMAN; LUNG TUMOR; PATHOLOGY; PHENOTYPE; PROCEDURES; REPRODUCIBILITY; X-RAY COMPUTED TOMOGRAPHY;

EID: 84962314053     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep23428     Document Type: Article
Times cited : (429)

References (29)
  • 1
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis
    • Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48, 441-446 (2012).
    • (2012) Eur J Cancer , vol.48 , pp. 441-446
    • Lambin, P.1
  • 2
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the challenges
    • Kumar, V. et al. Radiomics: the process and the challenges. Magn Reson Imaging 30, 1234-1248 (2012).
    • (2012) Magn Reson Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1
  • 3
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5, 4006 (2014).
    • (2014) Nat Commun , vol.5 , pp. 4006
    • Aerts, H.J.1
  • 4
    • 84915752982 scopus 로고    scopus 로고
    • NCI workshop report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures
    • Colen, R. et al. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures. Transl Oncol 7, 556-569 (2014).
    • (2014) Transl Oncol , vol.7 , pp. 556-569
    • Colen, R.1
  • 5
    • 34250697544 scopus 로고    scopus 로고
    • Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma
    • Kuo, M. D. et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 18, 821-831 (2007).
    • (2007) J Vasc Interv Radiol , vol.18 , pp. 821-831
    • Kuo, M.D.1
  • 6
    • 80053599063 scopus 로고    scopus 로고
    • Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
    • Zinn, P. O. et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. Plos One 6, e25451 (2011).
    • (2011) Plos One , vol.6 , pp. e25451
    • Zinn, P.O.1
  • 7
    • 84864349266 scopus 로고    scopus 로고
    • Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results
    • Gevaert, O. et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 264, 387-396 (2012).
    • (2012) Radiology , vol.264 , pp. 387-396
    • Gevaert, O.1
  • 8
    • 84879911109 scopus 로고    scopus 로고
    • Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes
    • Lee, H. J. et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: relationship with CT characteristics and histologic subtypes. Radiology 268, 254-264 (2013).
    • (2013) Radiology , vol.268 , pp. 254-264
    • Lee, H.J.1
  • 9
    • 84908458314 scopus 로고    scopus 로고
    • Are there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements
    • Halpenny, D. F. et al. Are there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements? Lung Cancer 86, 190-194 (2014).
    • (2014) Lung Cancer , vol.86 , pp. 190-194
    • Halpenny, D.F.1
  • 10
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114, 345-350 (2015).
    • (2015) Radiother Oncol , vol.114 , pp. 345-350
    • Coroller, T.P.1
  • 11
    • 79952788113 scopus 로고    scopus 로고
    • Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
    • Tixier, F. et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52, 369-378 (2011).
    • (2011) J Nucl Med , vol.52 , pp. 369-378
    • Tixier, F.1
  • 12
    • 84893482700 scopus 로고    scopus 로고
    • Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and mutations
    • Karlo, C. A. et al. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270, 464-471 (2014).
    • (2014) Radiology , vol.270 , pp. 464-471
    • Karlo, C.A.1
  • 13
    • 84884562832 scopus 로고    scopus 로고
    • Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability
    • Leijenaar, R. T. et al. Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52, 1391-1397 (2013).
    • (2013) Acta Oncol , vol.52 , pp. 1391-1397
    • Leijenaar, R.T.1
  • 14
    • 84911973434 scopus 로고    scopus 로고
    • Test-retest reproducibility analysis of lung CT image features
    • Balagurunathan, Y. et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 27, 805-823 (2014).
    • (2014) J Digit Imaging , vol.27 , pp. 805-823
    • Balagurunathan, Y.1
  • 15
    • 77956565862 scopus 로고    scopus 로고
    • Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    • Galavis, P. E. et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49, 1012-1016 (2010).
    • (2010) Acta Oncol , vol.49 , pp. 1012-1016
    • Galavis, P.E.1
  • 16
    • 84902489272 scopus 로고    scopus 로고
    • Exploring variability in ct characterization of tumors: A preliminary phantom study
    • Zhao, B. et al. Exploring Variability in CT Characterization of Tumors: A Preliminary Phantom Study. Transl Oncol 7, 88-93 (2014).
    • (2014) Transl Oncol , vol.7 , pp. 88-93
    • Zhao, B.1
  • 17
    • 67650085792 scopus 로고    scopus 로고
    • Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer
    • Zhao, B. et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 252, 263-272 (2009).
    • (2009) Radiology , vol.252 , pp. 263-272
    • Zhao, B.1
  • 18
    • 84962214032 scopus 로고    scopus 로고
    • Data collection report. (Date of access: 18/10/2012
    • Zhao, B. et al. RIDER Lung CT: MSKCC. Data collection report. (2012) Available at: https://wiki. cancerimagingarchive. net/display/ Public/RIDER+ Collections. (Date of access: 18/10/2012).
    • (2012) RIDER Lung CT: MSKCC
    • Zhao, B.1
  • 19
    • 80051725760 scopus 로고    scopus 로고
    • Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes
    • Oxnard, G. R. et al. Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes. J Clin Oncol 29, 3114-3119 (2011).
    • (2011) J Clin Oncol , vol.29 , pp. 3114-3119
    • Oxnard, G.R.1
  • 20
    • 84890056425 scopus 로고    scopus 로고
    • High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images
    • Hunter, A. et al. High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images. Med Phys. 40, 121916 (2013).
    • (2013) Med Phys. , vol.40 , pp. 121916
    • Hunter, A.1
  • 21
    • 84929915463 scopus 로고    scopus 로고
    • Determining the Variability of Lesion Size Measurements from CT Patient Data Sets Acquired under "No Change" Conditions
    • McNitt-Gray, M. F. et al. Determining the Variability of Lesion Size Measurements from CT Patient Data Sets Acquired under "No Change" Conditions. Transl Oncol 8, 55-64 (2015).
    • (2015) Transl Oncol , vol.8 , pp. 55-64
    • McNitt-Gray, M.F.1
  • 22
    • 84876166011 scopus 로고    scopus 로고
    • Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field
    • Tan, Y., Schwartz, L. H. & Zhao, B. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 40, 043502 (2013).
    • (2013) Med Phys , vol.40 , pp. 043502
    • Tan, Y.1    Schwartz, L.H.2    Zhao, B.3
  • 23
    • 0024521543 scopus 로고
    • A concordance correlation coefficient to evaluate reproducibility
    • Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255-268 (1989).
    • (1989) Biometrics , vol.45 , pp. 255-268
    • Lin, L.I.1
  • 24
    • 84914179053 scopus 로고    scopus 로고
    • R. Core Team. R Foundation for Statistical Computing, Vienna, Austria
    • R. Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www. R-project. org/.
    • (2013) R: A Language and Environment for Statistical Computing
  • 25
    • 0002924740 scopus 로고
    • Processing data for outliers
    • Dixon, W. J. Processing data for outliers. Biometrics 9, 74-89 (1953).
    • (1953) Biometrics , vol.9 , pp. 74-89
    • Dixon, W.J.1
  • 26
    • 84872009099 scopus 로고    scopus 로고
    • Assessing the effect of CT slice interval on unidimensional, bidimensional and volumetric measurements of solid tumours
    • Tan, Y. et al. Assessing the effect of CT slice interval on unidimensional, bidimensional and volumetric measurements of solid tumours. Cancer Imaging 12, 497-505 (2012).
    • (2012) Cancer Imaging , vol.12 , pp. 497-505
    • Tan, Y.1
  • 27
    • 84876922158 scopus 로고    scopus 로고
    • Exploring intra-and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals
    • Zhao, B. et al. Exploring intra-and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals. Eur J Radiol 82, 959-968 (2013).
    • (2013) Eur J Radiol , vol.82 , pp. 959-968
    • Zhao, B.1
  • 28
    • 84871923501 scopus 로고    scopus 로고
    • Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis
    • Ng, F. et al. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82, 342-348 (2012).
    • (2012) Eur J Radiol , vol.82 , pp. 342-348
    • Ng, F.1
  • 29
    • 84904248018 scopus 로고    scopus 로고
    • Robust Radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar, C. et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. Plos One 9, e102107 (2014).
    • (2014) Plos One , vol.9 , pp. e102107
    • Parmar, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.