메뉴 건너뛰기




Volumn 50, Issue 11, 2015, Pages 757-765

Measuring computed tomography scanner variability of radiomics features

Author keywords

Computed tomography; CT; Image features; Image texture; Phantom; Radiomics

Indexed keywords

ADULT; AGED; ARTICLE; CLINICAL ARTICLE; CLINICAL FEATURE; COMPUTED TOMOGRAPHY SCANNER; COMPUTER ASSISTED TOMOGRAPHY; CONTROLLED STUDY; HUMAN; NON SMALL CELL LUNG CANCER; PRIORITY JOURNAL; RADIOLOGICAL PARAMETERS; RADIOLOGY PHANTOM; RADIOMIC FEATURE; RETROSPECTIVE STUDY; SENSATION; COMPARATIVE STUDY; COMPUTER ASSISTED DIAGNOSIS; DEVICE FAILURE ANALYSIS; DEVICES; DIAGNOSTIC IMAGING; EQUIPMENT DESIGN; EVALUATION STUDY; IMAGING PHANTOM; LUNG TUMOR; MIDDLE AGED; PROCEDURES; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY; X-RAY COMPUTED TOMOGRAPHY;

EID: 84943774122     PISSN: 00209996     EISSN: 15360210     Source Type: Journal    
DOI: 10.1097/RLI.0000000000000180     Document Type: Article
Times cited : (525)

References (35)
  • 1
    • 77953305247 scopus 로고    scopus 로고
    • The biology underlying molecular imaging in oncology: From genome to anatome and back again
    • Gillies R, Anderson A, Gatenby R, et al. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol. 2010;65: 517-521.
    • (2010) Clin Radiol. , vol.65 , pp. 517-521
    • Gillies, R.1    Anderson, A.2    Gatenby, R.3
  • 2
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis.Eur J Cancer. 2012; 48:441-446.
    • (2012) Eur J Cancer. , vol.48 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 3
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:1-8.
    • (2014) Nat Commun. , vol.5 , pp. 1-8
    • Hjwl, A.1    Velazquez, E.R.2    Rth, L.3
  • 4
    • 84908211707 scopus 로고    scopus 로고
    • Prognostic value and reproducibility of pretreatment ct texture features in stage III non-small cell lung cancer
    • Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment ct texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90:834-842.
    • (2014) Int J Radiat Oncol Biol Phys. , vol.90 , pp. 834-842
    • Fried, D.V.1    Tucker, S.L.2    Zhou, S.3
  • 5
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675-680.
    • (2007) Nat Biotechnol. , vol.25 , pp. 675-680
    • Segal, E.1    Sirlin, C.B.2    Ooi, C.3
  • 6
    • 84884562832 scopus 로고    scopus 로고
    • Stability of FDG-PET radiomics features: An integrated analysis of test-retest and inter-observer variability
    • Leijenaar RT, Carvalho S, Velazquez ER, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52:1391-1397.
    • (2013) Acta Oncol. , vol.52 , pp. 1391-1397
    • Leijenaar, R.T.1    Carvalho, S.2    Velazquez, E.R.3
  • 7
    • 84890056425 scopus 로고    scopus 로고
    • High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images
    • Hunter LA, Krafft S, Stingo F, et al. High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images. Med Phys. 2013;40:121916.
    • (2013) Med Phys. , vol.40 , pp. 121916
    • Hunter, L.A.1    Krafft, S.2    Stingo, F.3
  • 8
    • 84902515123 scopus 로고    scopus 로고
    • Reproducibility and prognosis of quantitative features extracted from CT images
    • Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72-87.
    • (2014) Transl Oncol. , vol.7 , pp. 72-87
    • Balagurunathan, Y.1    Gu, Y.2    Wang, H.3
  • 9
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the challenges
    • Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234-48.
    • (2012) Magn Reson Imaging. , vol.30 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 10
    • 83755172956 scopus 로고    scopus 로고
    • Developing a classifier model for lung tumors in CT-scan images. 2011 I.E. International Conference on Systems
    • IEEE
    • Basu S, Hall LO, Goldgof DB, et al. Developing a classifier model for lung tumors in CT-scan images. 2011 I.E. International Conference on Systems, Man, and Cybernetics (SMC), 2011. IEEE: 1306-12.
    • (2011) Man, and Cybernetics (SMC) , pp. 1306-1312
    • Basu, S.1    Hall, L.O.2    Goldgof, D.B.3
  • 11
    • 77953333397 scopus 로고    scopus 로고
    • Relationship between sharpness and noise in CT images reconstructed with different kernels
    • Eldevik K, Nordhøy W, Skretting A. Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosimetry. 2010;139: 430-433.
    • (2010) Radiat Prot Dosimetry. , vol.139 , pp. 430-433
    • Eldevik, K.1    Nordhøy, W.2    Skretting, A.3
  • 14
    • 84925653723 scopus 로고    scopus 로고
    • Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations
    • Xu J, Fuld MK, Fung GS, et al. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations. Phys Med Biol. 2015;60:2881.
    • (2015) Phys Med Biol. , vol.60 , pp. 2881
    • Xu, J.1    Fuld, M.K.2    Fung, G.S.3
  • 17
    • 34250842700 scopus 로고    scopus 로고
    • Hepatic entropy and uniformity: Additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT
    • Ganeshan B, Miles KA, Young R, et al. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol. 2007;62:761-768.
    • (2007) Clin Radiol. , vol.62 , pp. 761-768
    • Ganeshan, B.1    Miles, K.A.2    Young, R.3
  • 20
    • 0031831398 scopus 로고    scopus 로고
    • Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms
    • Mendez AJ, Tahoces PG, Lado MJ, et al. Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms. Med Phys. 1998;25: 957-964.
    • (1998) Med Phys. , vol.25 , pp. 957-964
    • Mendez, A.J.1    Tahoces, P.G.2    Lado, M.J.3
  • 21
    • 79952788113 scopus 로고    scopus 로고
    • Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
    • Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52: 369-378.
    • (2011) J Nucl Med. , vol.52 , pp. 369-378
    • Tixier, F.1    Le Rest, C.C.2    Hatt, M.3
  • 22
    • 61449171165 scopus 로고    scopus 로고
    • Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning
    • Yu H, Caldwell C, Mah K, et al. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Transactions on Medical Imaging. 2009;28:374-383.
    • (2009) IEEE Transactions on Medical Imaging. , vol.28 , pp. 374-383
    • Yu, H.1    Caldwell, C.2    Mah, K.3
  • 23
    • 0033277593 scopus 로고    scopus 로고
    • Computerized analysis of lesions in US images of the breast
    • Giger ML, Al-Hallaq H, Huo Z, et al. Computerized analysis of lesions in US images of the breast. Acad Radiol. 1999;6:665-674.
    • (1999) Acad Radiol. , vol.6 , pp. 665-674
    • Giger, M.L.1    Al-Hallaq, H.2    Huo, Z.3
  • 24
    • 84923913977 scopus 로고    scopus 로고
    • IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics
    • Zhang L, Fried DV, Fave XJ, et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42: 1341-1353.
    • (2015) Med Phys. , vol.42 , pp. 1341-1353
    • Zhang, L.1    Fried, D.V.2    Fave, X.J.3
  • 25
    • 63649084909 scopus 로고    scopus 로고
    • Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver
    • Ganeshan B, Miles KA, Young RC, et al. Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol. 2009;70:101-110.
    • (2009) Eur J Radiol. , vol.70 , pp. 101-110
    • Ganeshan, B.1    Miles, K.A.2    Young, R.C.3
  • 26
    • 84879292058 scopus 로고    scopus 로고
    • Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade
    • Skogen K, Ganeshan B, Good C, et al. Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade. J Neurooncol. 2013;111: 213-219.
    • (2013) J Neurooncol. , vol.111 , pp. 213-219
    • Skogen, K.1    Ganeshan, B.2    Good, C.3
  • 27
    • 84871923501 scopus 로고    scopus 로고
    • Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis?
    • Ng F, Kozarski R, Ganeshan B, et al. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol. 2013;82:342-8.
    • (2013) Eur J Radiol. , vol.82 , pp. 342-348
    • Ng, F.1    Kozarski, R.2    Ganeshan, B.3
  • 30
    • 84902485651 scopus 로고    scopus 로고
    • The Quantitative Imaging Network: NCI's historical perspective and planned goals
    • Clarke LP, Nordstrom RJ, Zhang H, et al. The Quantitative Imaging Network: NCI's historical perspective and planned goals. Transl Oncol. 2014;7:1-4.
    • (2014) Transl Oncol. , vol.7 , pp. 1-4
    • Clarke, L.P.1    Nordstrom, R.J.2    Zhang, H.3
  • 31
    • 79952309367 scopus 로고    scopus 로고
    • A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging
    • Buckler AJ, Bresolin L, Dunnick NR, et al. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology. 2011;258:906-914.
    • (2011) Radiology. , vol.258 , pp. 906-914
    • Buckler, A.J.1    Bresolin, L.2    Dunnick, N.R.3
  • 32
    • 84904248018 scopus 로고    scopus 로고
    • Robust radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PloS One. 2014; 9:e102107.
    • (2014) PloS One. , vol.9 , pp. e102107
    • Parmar, C.1    Velazquez, E.R.2    Leijenaar, R.3
  • 33
    • 84939550937 scopus 로고    scopus 로고
    • Quantitative computed tomography imaging biomarkers in the diagnosis and management of lung cancer
    • [Epub ahead of print]
    • Kim H, Park CM, Goo JM, et al. Quantitative computed tomography imaging biomarkers in the diagnosis and management of lung cancer. Invest Radiol. 2015. [Epub ahead of print].
    • (2015) Invest Radiol.
    • Kim, H.1    Park, C.M.2    Goo, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.