메뉴 건너뛰기




Volumn 26, Issue 6, 2015, Pages 1233-1246

Partially shared latent factor learning with multiview data

Author keywords

Complementarity; Consistency; Latent factor learning; Multiview learning; Nonnegative matrix factorization (NMF); semisupervised learning

Indexed keywords

ALGORITHMS; FACTORIZATION; LEARNING ALGORITHMS; REGRESSION ANALYSIS; VIRTUAL REALITY;

EID: 85027945995     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2335234     Document Type: Article
Times cited : (113)

References (45)
  • 2
    • 77955359972 scopus 로고    scopus 로고
    • Canonical correlation analysis for multiview semisupervised feature extraction
    • Jan
    • O. Kursun and E. Alpaydin, "Canonical correlation analysis for multiview semisupervised feature extraction," in Proc. 10th Int. Conf. Artif. Intell. Soft Comput., Jan. 2010, pp. 430-436.
    • (2010) Proc. 10th Int. Conf. Artif. Intell. Soft Comput , pp. 430-436
    • Kursun, O.1    Alpaydin, E.2
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Jul
    • A. Blum and T. M. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. Comput. Learn. Theory, Jul. 1998, pp. 92-100.
    • (1998) Proc. Comput. Learn. Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.M.2
  • 4
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, nos. 2-3, pp. 103-134, 2000.
    • (2000) Mach. Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 6
    • 84908180127 scopus 로고    scopus 로고
    • A survey on multi-view learning
    • vol. abs/1304.5634. Available: arxiv.org/abs/1304.5634
    • C. Xu, D. Tao, and C. Xu. (2013). "A survey on multi-view learning," CoRR [Online]. vol. abs/1304.5634. Available: arxiv.org/abs/1304.5634
    • (2013) CoRR [Online]
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 8
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou and M. Li, "Semi-supervised learning by disagreement," Knowl. Inform. Syst., vol. 24, no. 3, pp. 415-439, 2010.
    • (2010) Knowl. Inform. Syst , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 10
    • 68949137209 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin-Madison, Wisconsin, WI, USA, Tech. Rep
    • B. Settles, "Active learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Wisconsin, WI, USA, Tech. Rep. 1648, 2009.
    • (2009) Active Learning Literature Survey , vol.1648
    • Settles, B.1
  • 11
    • 85161974295 scopus 로고    scopus 로고
    • Multi-view active learning in the nonrealizable case
    • Cambridge, MA, USA: MIT Press
    • W. Wang and Z.-H. Zhou, "Multi-view active learning in the nonrealizable case," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2010, pp. 2388-2396.
    • (2010) Advances in Neural Information Processing Systems , pp. 2388-2396
    • Wang, W.1    Zhou, Z.-H.2
  • 12
    • 56449102315 scopus 로고    scopus 로고
    • On multi-view active learning and the combination with semi-supervised learning
    • Jul
    • W. Wang and Z.-H. Zhou, "On multi-view active learning and the combination with semi-supervised learning," in Proc. 25th Int. Conf. Mach. Learn., Jul. 2008, pp. 1152-1159.
    • (2008) Proc. 25th Int. Conf. Mach. Learn , pp. 1152-1159
    • Wang, W.1    Zhou, Z.-H.2
  • 14
    • 36348938695 scopus 로고    scopus 로고
    • Semi-supervised learning with very few labeled training examples
    • Jul
    • Z.-H. Zhou, D.-C. Zhan, and Q. Yan, "Semi-supervised learning with very few labeled training examples," in Proc. 22nd AAAI Conf. Artif. Intell., Jul. 2007, pp. 675-680.
    • (2007) Proc. 22nd AAAI Conf. Artif. Intell , pp. 675-680
    • Zhou, Z.-H.1    Zhan, D.-C.2    Yan, Q.3
  • 17
    • 70449704123 scopus 로고    scopus 로고
    • Multiple view semisupervised dimensionality reduction
    • C. Hou, C. Zhang, Y. Wu, and F. Nie, "Multiple view semisupervised dimensionality reduction," Pattern Recognit., vol. 43, no. 3, pp. 720-730, 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.3 , pp. 720-730
    • Hou, C.1    Zhang, C.2    Wu, Y.3    Nie, F.4
  • 18
    • 84898782680 scopus 로고    scopus 로고
    • Heterogeneous image features integration via multi-modal semi-supervised learning model
    • Dec
    • X. Cai, F. Nie, W. Cai, and H. Huang, "Heterogeneous image features integration via multi-modal semi-supervised learning model," in Proc. Comput. Vis. Pattern Recognit., Dec. 2013, pp. 1737-1744.
    • (2013) Proc. Comput. Vis. Pattern Recognit , pp. 1737-1744
    • Cai, X.1    Nie, F.2    Cai, W.3    Huang, H.4
  • 19
    • 84874615171 scopus 로고    scopus 로고
    • Tw-k-means: Automated twolevel variable weighting clustering algorithm for multiview data
    • Apr
    • X. Chen, X. Xu, J. Z. Huang, and Y. Ye, "Tw-k-means: Automated twolevel variable weighting clustering algorithm for multiview data," IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 932-944, Apr. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng , vol.25 , Issue.4 , pp. 932-944
    • Chen, X.1    Xu, X.2    Huang, J.Z.3    Ye, Y.4
  • 20
    • 84897568262 scopus 로고    scopus 로고
    • Multi-view clustering and feature learning via structured sparsity
    • H. Wang, F. Nie, and H. Huang, "Multi-view clustering and feature learning via structured sparsity," in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 352-360.
    • (2013) Proc. 30th Int. Conf. Mach. Learn , pp. 352-360
    • Wang, H.1    Nie, F.2    Huang, H.3
  • 21
    • 70450168247 scopus 로고    scopus 로고
    • Spectral clustering with two views
    • Oct
    • V. R. de Sa, "Spectral clustering with two views," in Proc. Int. Conf. Mach. Learn., Oct. 2005, pp. 20-26.
    • (2005) Proc. Int. Conf. Mach. Learn , pp. 20-26
    • De Sa, V.R.1
  • 22
    • 85162436778 scopus 로고    scopus 로고
    • Co-regularized multi-view spectral clustering
    • Cambridge, MA, USA: MIT Press
    • A. Kumar, P. Rai, and H. Daumé, "Co-regularized multi-view spectral clustering," in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2011, pp. 1413-1421.
    • (2011) Neural Information Processing Systems , pp. 1413-1421
    • Kumar, A.1    Rai, P.2    Daumé, H.3
  • 24
    • 85162037528 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • Cambridge, MA, USA: MIT Press
    • Y. Jia, M. Salzmann, and T. Darrell, "Factorized latent spaces with structured sparsity," in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2010, pp. 982-990.
    • (2010) Neural Information Processing Systems , pp. 982-990
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 25
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 26
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA, USA: MIT Press
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Neural Information Processing Systems, vol. 13. Cambridge, MA, USA: MIT Press, 2000, pp. 556-562.
    • (2000) Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Jan
    • C. Ding, T. Li, and M. I. Jordan, "Convex and semi-nonnegative matrix factorizations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, Jan. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 29
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Aug
    • D. Cai, X. He, J. Han, and T. S. Huang, "Graph regularized nonnegative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 30
    • 84885381199 scopus 로고    scopus 로고
    • Structure preserving non-negative matrix factorization for dimensionality reduction
    • Z. Li, J. Liu, and H. Lu, "Structure preserving non-negative matrix factorization for dimensionality reduction," Comput. Vis. Image Understand., vol. 119, no. 9, pp. 1175-1189, 2013.
    • (2013) Comput. Vis. Image Understand , vol.119 , Issue.9 , pp. 1175-1189
    • Li, Z.1    Liu, J.2    Lu, H.3
  • 31
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Y. Chen, M. Rege, M. Dong, and J. Hua, "Non-negative matrix factorization for semi-supervised data clustering," Knowl. Inform. Syst., vol. 17, no. 3, pp. 355-379, 2008.
    • (2008) Knowl. Inform. Syst , vol.17 , Issue.3 , pp. 355-379
    • Chen, Y.1    Rege, M.2    Dong, M.3    Hua, J.4
  • 32
    • 84861310732 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for image representation
    • Jul
    • H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, "Constrained nonnegative matrix factorization for image representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1299-1311, Jul. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell , vol.34 , Issue.7 , pp. 1299-1311
    • Liu, H.1    Wu, Z.2    Li, X.3    Cai, D.4    Huang, T.S.5
  • 34
    • 84886433522 scopus 로고    scopus 로고
    • Multi-view clustering via joint nonnegative matrix factorization
    • May
    • J. Liu, C. Wang, J. Han, and J. Gao, "Multi-view clustering via joint nonnegative matrix factorization," in Proc. SIAM Int. Conf. Data Mining, May 2013, pp. 252-260.
    • (2013) Proc. SIAM Int. Conf. Data Mining , pp. 252-260
    • Liu, J.1    Wang, C.2    Han, J.3    Gao, J.4
  • 36
    • 34250776571 scopus 로고    scopus 로고
    • R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization
    • Jun
    • C. Ding, D. Zhou, X. He, and H. Zha, "R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization," in Proc. 23rd Int. Conf. Mach. Learn., Jun. 2006, pp. 281-288.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn , pp. 281-288
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 37
    • 78650981672 scopus 로고    scopus 로고
    • Image annotation using multi-correlation probabilistic matrix factorization
    • Oct
    • Z. Li, J. Liu, X. Zhu, T. Liu, and H. Lu, "Image annotation using multi-correlation probabilistic matrix factorization," in Proc. Int. Conf. Multimedia, Oct. 2010, pp. 1187-1190.
    • (2010) Proc. Int. Conf. Multimedia , pp. 1187-1190
    • Li, Z.1    Liu, J.2    Zhu, X.3    Liu, T.4    Lu, H.5
  • 38
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l21-norms minimization
    • Cambridge, MA, USA: MIT Press
    • F. Nie, X. Cai, H. Huang, and C. Ding, "Efficient and robust feature selection via joint l21-norms minimization," in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2010.
    • (2010) Neural Information Processing Systems
    • Nie, F.1    Cai, X.2    Huang, H.3    Ding, C.4
  • 39
    • 85167396596 scopus 로고    scopus 로고
    • Unsupervised feature selection using nonnegative spectral analysis
    • Jul
    • Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. AAAI, Jul. 2012.
    • (2012) Proc. AAAI
    • Li, Z.1    Yang, Y.2    Liu, J.3    Zhou, X.4    Lu, H.5
  • 40
    • 85028209279 scopus 로고    scopus 로고
    • Clusteringguided sparse structural learning for unsupervised feature selection
    • [Online]
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clusteringguided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng.. [Online]. Available: http://www.computer.org/csdl/trans/tk/preprint/06509368-abs.html
    • IEEE Trans. Knowl. Data Eng
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 41
    • 80052204125 scopus 로고    scopus 로고
    • Learning from multiple partially observed views-An application to multilingual text categorization
    • Cambridge, MA, USA: MIT Press
    • M. Amini, N. Usunier, and C. Goutte, "Learning from multiple partially observed views-An application to multilingual text categorization," in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2009, pp. 28-36.
    • (2009) Neural Information Processing Systems , pp. 28-36
    • Amini, M.1    Usunier, N.2    Goutte, C.3
  • 42
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • Aug
    • V. Sindhwani, P. Niyogi, and M. Belkin, "Beyond the point cloud: From transductive to semi-supervised learning," in Proc. 22nd Int. Conf. Mach. Learn., Aug. 2005, pp. 824-831.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 43
  • 44
  • 45
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Jul
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2. Jul. 2006, pp. 2169-2178.
    • (2006) Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.