메뉴 건너뛰기




Volumn 43, Issue 3, 2010, Pages 720-730

Multiple view semi-supervised dimensionality reduction

Author keywords

Dimensionality reduction; Domain knowledge; Multiple view; Semi supervised

Indexed keywords

CONSENSUS PATTERNS; DATA MINING APPLICATIONS; DATA SETS; DIMENSIONALITY REDUCTION; DOMAIN KNOWLEDGE; EMBEDDINGS; ITERATING ALGORITHM; LINEAR TRANSFORMATION; LOW-DIMENSIONAL SPACES; MULTIPLE REPRESENTATION; MULTIPLE VIEWS; OUT-OF-SAMPLE EXTENSION; PAIRWISE CONSTRAINTS; PATTERN SPACE; SEMI-SUPERVISED;

EID: 70449704123     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.07.015     Document Type: Article
Times cited : (111)

References (20)
  • 2
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
    • X. Zhu, Semi-supervised learning literature survey, Technical Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006.
    • (2006)
    • Zhu, X.1
  • 5
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L., and Roweis S. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4 (2003) 119-155
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 6
    • 21244496209 scopus 로고    scopus 로고
    • Metaclustering of gene expression data and literature-based information
    • Glenisson P., Mathys J., and Moor B.D. Metaclustering of gene expression data and literature-based information. SIGKDD Explorations Newsletter 5 2 (2003) 101-112
    • (2003) SIGKDD Explorations Newsletter , vol.5 , Issue.2 , pp. 101-112
    • Glenisson, P.1    Mathys, J.2    Moor, B.D.3
  • 8
    • 78651292438 scopus 로고    scopus 로고
    • Multi-view dimensionality reduction via canonical correlation analysis
    • TTI-TR-2008-4, 2008
    • D. Foster, S. Kakade, T. Zhang, Multi-view dimensionality reduction via canonical correlation analysis, TTI-C Technical Report, TTI-TR-2008-4, 2008.
    • TTI-C Technical Report
    • Foster, D.1    Kakade, S.2    Zhang, T.3
  • 10
    • 34547970997 scopus 로고    scopus 로고
    • D. Zhou, C. Burges, Spectral clustering and transductive learning with multiple views, in: ICML07, 2007, pp. 1159-1166.
    • D. Zhou, C. Burges, Spectral clustering and transductive learning with multiple views, in: ICML07, 2007, pp. 1159-1166.
  • 12
    • 33749248511 scopus 로고    scopus 로고
    • X. Yang, H. Fu, H. Zha, J.L. Barlow, Semi-supervised nonlinear dimensionality reduction, in: ICML06, Pittsburgh, PA, 2006, pp. 1065-1072.
    • X. Yang, H. Fu, H. Zha, J.L. Barlow, Semi-supervised nonlinear dimensionality reduction, in: ICML06, Pittsburgh, PA, 2006, pp. 1065-1072.
  • 16
    • 0000149506 scopus 로고
    • Two alternative ways for solving the coordination problem in multilevel optimization
    • Sobieski J.S. Two alternative ways for solving the coordination problem in multilevel optimization. Structural and Multidisciplinary Optimization 6 4 (1993) 205-215
    • (1993) Structural and Multidisciplinary Optimization , vol.6 , Issue.4 , pp. 205-215
    • Sobieski, J.S.1
  • 17
    • 70449728726 scopus 로고    scopus 로고
    • Multi-view local learning
    • Chicago, Illinois, USA
    • D. Zhang, F. Wang, C. Zhang, T. Li, Multi-view local learning, in: AAAI'08, Chicago, Illinois, USA, 2008.
    • (2008) AAAI'08
    • Zhang, D.1    Wang, F.2    Zhang, C.3    Li, T.4
  • 19
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (JMLR) 3 (2002) 583-617
    • (2002) Journal on Machine Learning Research (JMLR) , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.