메뉴 건너뛰기




Volumn 382, Issue , 2009, Pages

Multi-view clustering via canonical correlation analysis

Author keywords

[No Author keywords available]

Indexed keywords

AUDIO-VISUAL; CANONICAL CORRELATION ANALYSIS; CLUSTERING DATA; DOCUMENT CLUSTERING; HARD PROBLEMS; HIGH DIMENSIONS; LINK STRUCTURE; MIXTURES OF GAUSSIANS; MULTI-VIEW CLUSTERING; MULTIPLE VIEWS; PRINCIPAL COMPONENTS ANALYSIS; RANDOM PROJECTIONS; SEPARATION CONDITION; SPEAKER CLUSTERING; WIKIPEDIA;

EID: 70049098331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1553374.1553391     Document Type: Conference Paper
Times cited : (277)

References (16)
  • 1
    • 26944433782 scopus 로고    scopus 로고
    • On spectral learning of mixtures of distributions
    • Achlioptas, D., & McSherry, F. (2005). On spectral learning of mixtures of distributions. Conf. on Learning Thy (pp. 458-469).
    • (2005) Conf. on Learning Thy , pp. 458-469
    • Achlioptas, D.1    McSherry, F.2
  • 2
    • 34547982360 scopus 로고    scopus 로고
    • Two-view feature generation model for semi-supervised learning
    • Ando, R. K., & Zhang, T. (2007). Two-view feature generation model for semi-supervised learning. Int. Conf. on Machine Learning (pp. 25-32).
    • (2007) Int. Conf. on Machine Learning , pp. 25-32
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 14544275956 scopus 로고    scopus 로고
    • Learning mixtures of separated nonspherical Gaussians
    • Arora, S., & Kannan, R. (2005). Learning mixtures of separated nonspherical Gaussians. Ann. Applied Prob., 15, 69-92.
    • (2005) Ann. Applied Prob , vol.15 , pp. 69-92
    • Arora, S.1    Kannan, R.2
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Conf. on Learning Thy. (pp. 92-100).
    • (1998) Conf. on Learning Thy , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 6
    • 57949105623 scopus 로고    scopus 로고
    • Isotropic PCA and affine-invariant clustering
    • Brubaker, S. C., & Vempala, S. (2008). Isotropic PCA and affine-invariant clustering. Found. of Comp. Sci. (pp. 551-560).
    • (2008) Found. of Comp. Sci , pp. 551-560
    • Brubaker, S.C.1    Vempala, S.2
  • 7
    • 84898062517 scopus 로고    scopus 로고
    • Learning mixtures of distributions using correlations and independence
    • Chaudhuri, K., & Rao, S. (2008). Learning mixtures of distributions using correlations and independence. Conf. On Learning Thy. (pp. 9-20).
    • (2008) Conf. On Learning Thy , pp. 9-20
    • Chaudhuri, K.1    Rao, S.2
  • 8
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of Gaussians
    • Dasgupta, S. (1999). Learning mixtures of Gaussians. Found. of Comp. Sci. (pp. 634-644).
    • (1999) Found. of Comp. Sci , pp. 634-644
    • Dasgupta, S.1
  • 9
    • 0009827232 scopus 로고    scopus 로고
    • A two-round variant of EM for Gaussian mixtures
    • Dasgupta, S., & Schulman, L. (2000). A two-round variant of EM for Gaussian mixtures. Uncertainty in Art. Int. (pp. 152-159).
    • (2000) Uncertainty in Art. Int , pp. 152-159
    • Dasgupta, S.1    Schulman, L.2
  • 10
    • 0019053271 scopus 로고
    • Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
    • Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans. Acoustics, Speech, and Signal Proc., 28, 357-366.
    • (1980) IEEE Trans. Acoustics, Speech, and Signal Proc , pp. 357-366
    • Davis, S.B.1    Mermelstein, P.2
  • 12
    • 38049026697 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Kakade, S. M., & Foster, D. P. (2007). Multi-view regression via canonical correlation analysis. Conf. Learning Thy (pp. 82-96).
    • (2007) Conf. Learning Thy , pp. 82-96
    • Kakade, S.M.1    Foster, D.P.2
  • 14
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices: An approach through geometric functional analysis
    • Rudelson, M., & Vershynin, R. (2007). Sampling from large matrices: An approach through geometric functional analysis. Jour. of ACM.
    • (2007) Jour. of ACM
    • Rudelson, M.1    Vershynin, R.2
  • 16
    • 0036957867 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures of distributions
    • Vempala, V., & Wang, G. (2002). A spectral algorithm for learning mixtures of distributions. Found. of Comp. Sci. (pp. 113-123).
    • (2002) Found. of Comp. Sci , pp. 113-123
    • Vempala, V.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.