메뉴 건너뛰기




Volumn 34, Issue 7, 2012, Pages 1299-1311

Constrained nonnegative matrix factorization for image representation

Author keywords

clustering; dimension reduction; Nonnegative matrix factorization; semi supervised learning

Indexed keywords

CLUSTERING; DIMENSION REDUCTION; DISCRIMINATING POWER; EMPIRICAL EXPERIMENTS; IMAGE REPRESENTATIONS; LABEL INFORMATION; LINEAR REPRESENTATION; MATRIX DECOMPOSITION; NONNEGATIVE MATRIX FACTORIZATION; NOVEL ALGORITHM; OPTIMIZATION PROBLEMS; REAL-WORLD APPLICATION; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; STATE-OF-THE-ART APPROACH; UNSUPERVISED METHOD;

EID: 84861310732     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.217     Document Type: Article
Times cited : (471)

References (38)
  • 2
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and H.S. Seung, "Learning the Parts of Objects by Non-Negative Matrix Factorization," Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 3
    • 49849097634 scopus 로고    scopus 로고
    • The relationships among various nonnega-tive matrix factorization methods for clustering
    • T. Li and C. Ding, "The Relationships among Various Nonnega-tive Matrix Factorization Methods for Clustering," Proc. Sixth IEEE Int'l Conf. Data Mining, pp. 362-371, 2006.
    • (2006) Proc. Sixth IEEE Int'l Conf. Data Mining , pp. 362-371
    • Li, T.1    Ding, C.2
  • 14
    • 25844488029 scopus 로고    scopus 로고
    • Document clustering using nonnegative matrix factorization
    • DOI 10.1016/j.ipm.2004.11.005, PII S0306457304001542
    • F. Shahnaz, M.W. Berry, V. Pauca, and R.J. Plemmons, "Document Clustering Using Nonnegative Matrix Factorization," Information Processing and Management, vol. 42, pp. 373-386, 2006. (Pubitemid 41394167)
    • (2006) Information Processing and Management , vol.42 , Issue.2 , pp. 373-386
    • Shahnaz, F.1    Berry, M.W.2    Pauca, V.P.3    Plemmons, R.J.4
  • 15
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, V. Sindhwani, and P. Niyogi, "Manifold Regulariza-tion: A Geometric Framework for Learning from Examples," J. Machine Learning Research, vol. 7, pp. 2399-2434, 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 20
    • 33750737012 scopus 로고    scopus 로고
    • Nonnegative matrix factorization and probabilistic latent semantic indexing: Equivalence chi-square statistics and a hybrid method
    • C. Ding, T. Li, and W. Peng, "Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence Chi-Square Statistics and a Hybrid Method," Proc. AAAI Conf. Artificial Intelligence, 2006.
    • (2006) Proc. AAAI Conf. Artificial Intelligence
    • Ding, C.1    Li, T.2    Peng, W.3
  • 21
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer, "Non-Negative Matrix Factorization with Sparseness Constraints," J. Machine Learning Research, vol. 5, pp. 1457-1469, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 23
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, "Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values," Environmetrics, vol. 5, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 27
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Ding, X. He, and H.D. Simon, "On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering," Proc. SIAM Data Mining Conf., pp. 606-610, 2005.
    • (2005) Proc. SIAM Data Mining Conf. , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 28
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin, "Projected Gradient Methods for Nonnegative Matrix Factorization," Neural Computation, vol. 19, no. 10, pp. 2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 29
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • DOI 10.1109/TNN.2007.895831
    • C.-J. Lin, "On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization," IEEE Trans. Neural Networks, vol. 18, no. 6, pp. 1589-1596, Nov. 2007. (Pubitemid 350148414)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 30
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler, C. Schnörr, P. Bennett, and E. Parrado-Hernandez, "Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming," J. Machine Learning Research, vol. 7, pp. 1385-1407, 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 31
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum Likelihood from Incomplete Data via the Em Algorithm," J. Royal Statistics Soc., vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Statistics Soc. , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 33
    • 0008815681 scopus 로고    scopus 로고
    • Additive versus exponentiated gradient updates for linear prediction
    • J. Kivinen and M. Warmuth, "Additive versus Exponentiated Gradient Updates for Linear Prediction," J. Information and Computation, vol. 132, pp. 1-64, 1997.
    • (1997) J. Information and Computation , vol.132 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.2
  • 37
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int'l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int'l J. Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.