메뉴 건너뛰기




Volumn 45, Issue 5, 2015, Pages 941-953

Parameter selection of gaussian kernel for one-class SVM

Author keywords

Gaussian kernel; one class SVM (OCSVM); parameter selection

Indexed keywords

FAULT DETECTION; GAUSSIAN DISTRIBUTION;

EID: 85027932710     PISSN: 21682267     EISSN: 21682275     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2340433     Document Type: Article
Times cited : (129)

References (39)
  • 1
    • 80051697507 scopus 로고    scopus 로고
    • Fault detection, identification and diagnosis using CUSUM based PCA
    • M. A. Bin Shams, H. M. Budman, and T. A. Duever, "Fault detection, identification and diagnosis using CUSUM based PCA," Chem. Eng. Sci., vol. 66, no. 20, pp. 4488-4498, 2011.
    • (2011) Chem. Eng. Sci. , vol.66 , Issue.20 , pp. 4488-4498
    • Bin Shams, M.A.1    Budman, H.M.2    Duever, T.A.3
  • 2
    • 79151475707 scopus 로고    scopus 로고
    • High-speed inline defect detection for TFT-LCD array process using a novel support vector data description
    • Y. H. Liu, Y. C. Liu, and Y. Z. Chen, "High-speed inline defect detection for TFT-LCD array process using a novel support vector data description," Expert Syst. Appl., vol. 38, no. 5, pp. 6222-6231, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 6222-6231
    • Liu, Y.H.1    Liu, Y.C.2    Chen, Y.Z.3
  • 3
    • 34548777708 scopus 로고    scopus 로고
    • Model selection for anomaly detection in wireless ad hoc networks
    • Honolulu, HI, USA
    • H. Deng and R. Xu, "Model selection for anomaly detection in wireless ad hoc networks," in Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM), Honolulu, HI, USA, 2007, pp. 540-546.
    • (2007) Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM) , pp. 540-546
    • Deng, H.1    Xu, R.2
  • 4
    • 79959761578 scopus 로고    scopus 로고
    • Anomaly detection in hyperspectral images based on an adaptive support vector method
    • Jul.
    • S. Khazai, S. Homayouni, A. Safari, and B. Mojaradi, "Anomaly detection in hyperspectral images based on an adaptive support vector method," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 646-650, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 646-650
    • Khazai, S.1    Homayouni, S.2    Safari, A.3    Mojaradi, B.4
  • 5
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 1: Statistical approaches
    • M. Markou and S. Singh, "Novelty detection: A review-Part 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 6
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 2: Neural network based approaches
    • M. Markou and S. Singh, "Novelty detection: A review-Part 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 7
    • 84881606574 scopus 로고    scopus 로고
    • A modified support vector data description based novelty detection approach for machinery components
    • S. J. Wang, J. B. Yu, E. Lapira, and J. Lee, "A modified support vector data description based novelty detection approach for machinery components," Appl. Soft Comput., vol. 13, no. 2, pp. 1193-1205, 2013.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.2 , pp. 1193-1205
    • Wang, S.J.1    Yu, J.B.2    Lapira, E.3    Lee, J.4
  • 8
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S. J. Qin, "Statistical process monitoring: Basics and beyond," J. Chemometrics, vol. 17, nos. 8-9, pp. 480-502, 2003.
    • (2003) J. Chemometrics , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 9
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • Jun.
    • A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt, "One-class novelty detection for seizure analysis from intracranial EEG," J. Mach. Learn. Res., vol. 7, pp. 1025-1044, Jun. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1025-1044
    • Gardner, A.B.1    Krieger, A.M.2    Vachtsevanos, G.3    Litt, B.4
  • 10
    • 76849101069 scopus 로고    scopus 로고
    • Semiconductor manufacturing process monitoring based on adaptive substatistical PCA
    • Feb.
    • Z. Q. Ge and Z. H. Song, "Semiconductor manufacturing process monitoring based on adaptive substatistical PCA," IEEE Trans. Semicond. Manuf., vol. 23, no. 1, pp. 99-108, Feb. 2010.
    • (2010) IEEE Trans. Semicond. Manuf. , vol.23 , Issue.1 , pp. 99-108
    • Ge, Z.Q.1    Song, Z.H.2
  • 11
    • 0001614845 scopus 로고
    • A probabilistic resource allocating network for novelty detection
    • S. Roberts and L. Tarassenko, "A probabilistic resource allocating network for novelty detection," Neural Comput., vol. 6, no. 2, pp. 270-284, 1994.
    • (1994) Neural Comput. , vol.6 , Issue.2 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 12
    • 77955378338 scopus 로고    scopus 로고
    • Novelty detection on metallic surfaces by GMM learning in Gabor space
    • Y. Savran and B. Gunsel, "Novelty detection on metallic surfaces by GMM learning in Gabor space," in Proc. Image Anal. Recognit. II, vol. 6112. 2010, pp. 325-334.
    • (2010) Proc. Image Anal. Recognit. II , vol.6112 , pp. 325-334
    • Savran, Y.1    Gunsel, B.2
  • 13
    • 44349143433 scopus 로고    scopus 로고
    • Novelty detection using one-class Parzen density estimator. An application to surveillance of nosocomial infections
    • Amsterdam, The Netherland: IOS Press
    • G. Cohen, H. Sax, and A. Geissbuhler, "Novelty detection using one-class Parzen density estimator. An application to surveillance of nosocomial infections," in Ehealth Beyond the Horizon-Get It There, vol. 136. Amsterdam, The Netherland: IOS Press, 2008, pp. 21-26.
    • (2008) Ehealth beyond the Horizon-Get It There , vol.136 , pp. 21-26
    • Cohen, G.1    Sax, H.2    Geissbuhler, A.3
  • 14
    • 79953818960 scopus 로고    scopus 로고
    • A method for multiphase batch process monitoring based on auto phase identification
    • W. Sun et al., "A method for multiphase batch process monitoring based on auto phase identification," J. Process Control, vol. 21, no. 4, pp. 627-638, 2011.
    • (2011) J. Process Control , vol.21 , Issue.4 , pp. 627-638
    • Sun, W.1
  • 15
    • 84898970836 scopus 로고    scopus 로고
    • Kernel PCA and de-noising in feature spaces
    • Denver, CO, USA: MIT press
    • S. Mika et al., "Kernel PCA and de-noising in feature spaces," in Advances in Neural Information Processing Systems, vol. 11. Denver, CO, USA: MIT press, 1999, pp. 536-542.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 536-542
    • Mika, S.1
  • 16
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • C. Y. Cheng, C. C. Hsu, and M. C. Chen, "Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes," Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2254-2262, 2010.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.5 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 17
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • H. Hoffmann, "Kernel PCA for novelty detection," Pattern Recognit., vol. 40, no. 3, pp. 863-874, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 18
    • 84866013812 scopus 로고    scopus 로고
    • L1 norm based KPCA for novelty detection
    • Y. Xiao, H. Wang, W. Xu, and J. Zhou, "L1 norm based KPCA for novelty detection," Pattern Recognit., vol. 46, no. 1, pp. 389-396, 2013.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 389-396
    • Xiao, Y.1    Wang, H.2    Xu, W.3    Zhou, J.4
  • 19
    • 67649403178 scopus 로고    scopus 로고
    • Fast and efficient strategies for model selection of Gaussian support vector machine
    • Oct.
    • Z. Xu, M. Dai, and D. Meng, "Fast and efficient strategies for model selection of Gaussian support vector machine," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1292-1307, Oct. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.39 , Issue.5 , pp. 1292-1307
    • Xu, Z.1    Dai, M.2    Meng, D.3
  • 20
    • 79952898711 scopus 로고    scopus 로고
    • A practical approach to model selection for support vector machines with a Gaussian kernel
    • Apr.
    • M. Varewyck and J.-P. Martens, "A practical approach to model selection for support vector machines with a Gaussian kernel," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 330-340, Apr. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.41 , Issue.2 , pp. 330-340
    • Varewyck, M.1    Martens, J.-P.2
  • 21
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • K.-P. Wu and S.-D. Wang, "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space," Pattern Recognit., vol. 42, no. 5, pp. 710-717, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 22
    • 57049126274 scopus 로고    scopus 로고
    • Two criteria for model selection in multiclass support vector machines
    • Dec.
    • L. Wang, P. Xue, and K. L. Chan, "Two criteria for model selection in multiclass support vector machines," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 6, pp. 1432-1448, Dec. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.38 , Issue.6 , pp. 1432-1448
    • Wang, L.1    Xue, P.2    Chan, K.L.3
  • 23
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. M. J. Tax and R. P. W. Duin, "Uniform object generation for optimizing one-class classifiers," J. Mach. Learn. Res., vol. 2, no. 2, pp. 155-173, 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , Issue.2 , pp. 155-173
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 28
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Adv. Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, 1999.
    • (1999) Adv. Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 29
    • 77953812676 scopus 로고    scopus 로고
    • Maximum likelihood model selection for 1-Norm soft margin SVMs with multiple parameters
    • Aug.
    • T. Glasmachers and C. Igel, "Maximum likelihood model selection for 1-Norm soft margin SVMs with multiple parameters," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1522-1528, Aug. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.8 , pp. 1522-1528
    • Glasmachers, T.1    Igel, C.2
  • 30
    • 79955475773 scopus 로고    scopus 로고
    • Selecting critical patterns based on local geometrical and statistical information
    • Jun.
    • Y. H. Li and L. Maguire, "Selecting critical patterns based on local geometrical and statistical information," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1189-1201, Jun. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1189-1201
    • Li, Y.H.1    Maguire, L.2
  • 34
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: One-sided selection," in Proc. Int. Conf. Mach. Learn., 1997, p. 179.
    • (1997) Proc. Int. Conf. Mach. Learn. , pp. 179
    • Kubat, M.1    Matwin, S.2
  • 35
    • 11244308266 scopus 로고    scopus 로고
    • Class-boundary alignment for imbalanced dataset learning
    • Washington, DC, USA
    • G. Wu and E. Y. Chang, "Class-boundary alignment for imbalanced dataset learning," in Proc. Int. Conf. Mach. Learn. (ICML), Washington, DC, USA, 2003, pp. 49-56.
    • (2003) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 49-56
    • Wu, G.1    Chang, E.Y.2
  • 36
    • 70349915779 scopus 로고    scopus 로고
    • A small sphere and large margin approach for novelty detection using training data with outliers
    • Nov.
    • M. R. Wu and J. P. Ye, "A small sphere and large margin approach for novelty detection using training data with outliers," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2088-2092, Nov. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.11 , pp. 2088-2092
    • Wu, M.R.1    Ye, J.P.2
  • 37
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan.
    • J. Demsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 38
    • 84890433386 scopus 로고    scopus 로고
    • An efficient approach to integrating radius information into multiple kernel learning
    • Apr.
    • X. W. Liu, L. Wang, J. P. Yin, E. Zhu, and J. Zhang, "An efficient approach to integrating radius information into multiple kernel learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 557-569, Apr. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.2 , pp. 557-569
    • Liu, X.W.1    Wang, L.2    Yin, J.P.3    Zhu, E.4    Zhang, J.5
  • 39
    • 84890442548 scopus 로고    scopus 로고
    • An adaptive approach to learning optimal neighborhood kernels
    • Feb.
    • X. W. Liu et al., "An adaptive approach to learning optimal neighborhood kernels," IEEE Trans. Cybern., vol. 43, no. 1, pp. 371-384, Feb. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.1 , pp. 371-384
    • Liu, X.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.