-
1
-
-
80051697507
-
Fault detection, identification and diagnosis using CUSUM based PCA
-
M. A. Bin Shams, H. M. Budman, and T. A. Duever, "Fault detection, identification and diagnosis using CUSUM based PCA," Chem. Eng. Sci., vol. 66, no. 20, pp. 4488-4498, 2011.
-
(2011)
Chem. Eng. Sci.
, vol.66
, Issue.20
, pp. 4488-4498
-
-
Bin Shams, M.A.1
Budman, H.M.2
Duever, T.A.3
-
2
-
-
79151475707
-
High-speed inline defect detection for TFT-LCD array process using a novel support vector data description
-
Y. H. Liu, Y. C. Liu, and Y. Z. Chen, "High-speed inline defect detection for TFT-LCD array process using a novel support vector data description," Expert Syst. Appl., vol. 38, no. 5, pp. 6222-6231, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.5
, pp. 6222-6231
-
-
Liu, Y.H.1
Liu, Y.C.2
Chen, Y.Z.3
-
3
-
-
34548777708
-
Model selection for anomaly detection in wireless ad hoc networks
-
Honolulu, HI, USA
-
H. Deng and R. Xu, "Model selection for anomaly detection in wireless ad hoc networks," in Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM), Honolulu, HI, USA, 2007, pp. 540-546.
-
(2007)
Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM)
, pp. 540-546
-
-
Deng, H.1
Xu, R.2
-
4
-
-
79959761578
-
Anomaly detection in hyperspectral images based on an adaptive support vector method
-
Jul.
-
S. Khazai, S. Homayouni, A. Safari, and B. Mojaradi, "Anomaly detection in hyperspectral images based on an adaptive support vector method," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 646-650, Jul. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.4
, pp. 646-650
-
-
Khazai, S.1
Homayouni, S.2
Safari, A.3
Mojaradi, B.4
-
5
-
-
0142063407
-
Novelty detection: A review-Part 1: Statistical approaches
-
M. Markou and S. Singh, "Novelty detection: A review-Part 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
6
-
-
0142126712
-
Novelty detection: A review-Part 2: Neural network based approaches
-
M. Markou and S. Singh, "Novelty detection: A review-Part 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
7
-
-
84881606574
-
A modified support vector data description based novelty detection approach for machinery components
-
S. J. Wang, J. B. Yu, E. Lapira, and J. Lee, "A modified support vector data description based novelty detection approach for machinery components," Appl. Soft Comput., vol. 13, no. 2, pp. 1193-1205, 2013.
-
(2013)
Appl. Soft Comput.
, vol.13
, Issue.2
, pp. 1193-1205
-
-
Wang, S.J.1
Yu, J.B.2
Lapira, E.3
Lee, J.4
-
8
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
S. J. Qin, "Statistical process monitoring: Basics and beyond," J. Chemometrics, vol. 17, nos. 8-9, pp. 480-502, 2003.
-
(2003)
J. Chemometrics
, vol.17
, Issue.8-9
, pp. 480-502
-
-
Qin, S.J.1
-
9
-
-
33745235087
-
One-class novelty detection for seizure analysis from intracranial EEG
-
Jun.
-
A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt, "One-class novelty detection for seizure analysis from intracranial EEG," J. Mach. Learn. Res., vol. 7, pp. 1025-1044, Jun. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1025-1044
-
-
Gardner, A.B.1
Krieger, A.M.2
Vachtsevanos, G.3
Litt, B.4
-
10
-
-
76849101069
-
Semiconductor manufacturing process monitoring based on adaptive substatistical PCA
-
Feb.
-
Z. Q. Ge and Z. H. Song, "Semiconductor manufacturing process monitoring based on adaptive substatistical PCA," IEEE Trans. Semicond. Manuf., vol. 23, no. 1, pp. 99-108, Feb. 2010.
-
(2010)
IEEE Trans. Semicond. Manuf.
, vol.23
, Issue.1
, pp. 99-108
-
-
Ge, Z.Q.1
Song, Z.H.2
-
11
-
-
0001614845
-
A probabilistic resource allocating network for novelty detection
-
S. Roberts and L. Tarassenko, "A probabilistic resource allocating network for novelty detection," Neural Comput., vol. 6, no. 2, pp. 270-284, 1994.
-
(1994)
Neural Comput.
, vol.6
, Issue.2
, pp. 270-284
-
-
Roberts, S.1
Tarassenko, L.2
-
12
-
-
77955378338
-
Novelty detection on metallic surfaces by GMM learning in Gabor space
-
Y. Savran and B. Gunsel, "Novelty detection on metallic surfaces by GMM learning in Gabor space," in Proc. Image Anal. Recognit. II, vol. 6112. 2010, pp. 325-334.
-
(2010)
Proc. Image Anal. Recognit. II
, vol.6112
, pp. 325-334
-
-
Savran, Y.1
Gunsel, B.2
-
13
-
-
44349143433
-
Novelty detection using one-class Parzen density estimator. An application to surveillance of nosocomial infections
-
Amsterdam, The Netherland: IOS Press
-
G. Cohen, H. Sax, and A. Geissbuhler, "Novelty detection using one-class Parzen density estimator. An application to surveillance of nosocomial infections," in Ehealth Beyond the Horizon-Get It There, vol. 136. Amsterdam, The Netherland: IOS Press, 2008, pp. 21-26.
-
(2008)
Ehealth beyond the Horizon-Get It There
, vol.136
, pp. 21-26
-
-
Cohen, G.1
Sax, H.2
Geissbuhler, A.3
-
14
-
-
79953818960
-
A method for multiphase batch process monitoring based on auto phase identification
-
W. Sun et al., "A method for multiphase batch process monitoring based on auto phase identification," J. Process Control, vol. 21, no. 4, pp. 627-638, 2011.
-
(2011)
J. Process Control
, vol.21
, Issue.4
, pp. 627-638
-
-
Sun, W.1
-
15
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
Denver, CO, USA: MIT press
-
S. Mika et al., "Kernel PCA and de-noising in feature spaces," in Advances in Neural Information Processing Systems, vol. 11. Denver, CO, USA: MIT press, 1999, pp. 536-542.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 536-542
-
-
Mika, S.1
-
16
-
-
77749340024
-
Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
-
C. Y. Cheng, C. C. Hsu, and M. C. Chen, "Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes," Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2254-2262, 2010.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.5
, pp. 2254-2262
-
-
Cheng, C.Y.1
Hsu, C.C.2
Chen, M.C.3
-
17
-
-
33750522220
-
Kernel PCA for novelty detection
-
H. Hoffmann, "Kernel PCA for novelty detection," Pattern Recognit., vol. 40, no. 3, pp. 863-874, 2007.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.3
, pp. 863-874
-
-
Hoffmann, H.1
-
18
-
-
84866013812
-
L1 norm based KPCA for novelty detection
-
Y. Xiao, H. Wang, W. Xu, and J. Zhou, "L1 norm based KPCA for novelty detection," Pattern Recognit., vol. 46, no. 1, pp. 389-396, 2013.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 389-396
-
-
Xiao, Y.1
Wang, H.2
Xu, W.3
Zhou, J.4
-
19
-
-
67649403178
-
Fast and efficient strategies for model selection of Gaussian support vector machine
-
Oct.
-
Z. Xu, M. Dai, and D. Meng, "Fast and efficient strategies for model selection of Gaussian support vector machine," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1292-1307, Oct. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.39
, Issue.5
, pp. 1292-1307
-
-
Xu, Z.1
Dai, M.2
Meng, D.3
-
20
-
-
79952898711
-
A practical approach to model selection for support vector machines with a Gaussian kernel
-
Apr.
-
M. Varewyck and J.-P. Martens, "A practical approach to model selection for support vector machines with a Gaussian kernel," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 330-340, Apr. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.41
, Issue.2
, pp. 330-340
-
-
Varewyck, M.1
Martens, J.-P.2
-
21
-
-
58249083168
-
Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
-
K.-P. Wu and S.-D. Wang, "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space," Pattern Recognit., vol. 42, no. 5, pp. 710-717, 2009.
-
(2009)
Pattern Recognit.
, vol.42
, Issue.5
, pp. 710-717
-
-
Wu, K.-P.1
Wang, S.-D.2
-
22
-
-
57049126274
-
Two criteria for model selection in multiclass support vector machines
-
Dec.
-
L. Wang, P. Xue, and K. L. Chan, "Two criteria for model selection in multiclass support vector machines," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 6, pp. 1432-1448, Dec. 2008.
-
(2008)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.38
, Issue.6
, pp. 1432-1448
-
-
Wang, L.1
Xue, P.2
Chan, K.L.3
-
23
-
-
0013372968
-
Uniform object generation for optimizing one-class classifiers
-
D. M. J. Tax and R. P. W. Duin, "Uniform object generation for optimizing one-class classifiers," J. Mach. Learn. Res., vol. 2, no. 2, pp. 155-173, 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, Issue.2
, pp. 155-173
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
24
-
-
38149110576
-
-
Berlin Germany: Springer
-
P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski, Some Properties of the Gaussian Kernel for One Class Learning. Berlin, Germany: Springer, 2007, pp. 269-278.
-
(2007)
Some Properties of the Gaussian Kernel for One Class Learning
, pp. 269-278
-
-
Evangelista, P.F.1
Embrechts, M.J.2
Szymanski, B.K.3
-
25
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Comput., vol. 13, no. 7, pp. 1443-1471, 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
28
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Adv. Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, 1999.
-
(1999)
Adv. Large Margin Classifiers
, vol.10
, Issue.3
, pp. 61-74
-
-
Platt, J.1
-
29
-
-
77953812676
-
Maximum likelihood model selection for 1-Norm soft margin SVMs with multiple parameters
-
Aug.
-
T. Glasmachers and C. Igel, "Maximum likelihood model selection for 1-Norm soft margin SVMs with multiple parameters," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1522-1528, Aug. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.8
, pp. 1522-1528
-
-
Glasmachers, T.1
Igel, C.2
-
30
-
-
79955475773
-
Selecting critical patterns based on local geometrical and statistical information
-
Jun.
-
Y. H. Li and L. Maguire, "Selecting critical patterns based on local geometrical and statistical information," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1189-1201, Jun. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.6
, pp. 1189-1201
-
-
Li, Y.H.1
Maguire, L.2
-
31
-
-
62249120040
-
Outlier detection with the kernelized spatial depth function
-
Feb.
-
Y. Chen, X. Dang, H. Peng, J. Bart, and L. Henry, "Outlier detection with the kernelized spatial depth function," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 288-305, Feb. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 288-305
-
-
Chen, Y.1
Dang, X.2
Peng, H.3
Bart, J.4
Henry, L.5
-
34
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: One-sided selection," in Proc. Int. Conf. Mach. Learn., 1997, p. 179.
-
(1997)
Proc. Int. Conf. Mach. Learn.
, pp. 179
-
-
Kubat, M.1
Matwin, S.2
-
35
-
-
11244308266
-
Class-boundary alignment for imbalanced dataset learning
-
Washington, DC, USA
-
G. Wu and E. Y. Chang, "Class-boundary alignment for imbalanced dataset learning," in Proc. Int. Conf. Mach. Learn. (ICML), Washington, DC, USA, 2003, pp. 49-56.
-
(2003)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 49-56
-
-
Wu, G.1
Chang, E.Y.2
-
36
-
-
70349915779
-
A small sphere and large margin approach for novelty detection using training data with outliers
-
Nov.
-
M. R. Wu and J. P. Ye, "A small sphere and large margin approach for novelty detection using training data with outliers," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2088-2092, Nov. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2088-2092
-
-
Wu, M.R.1
Ye, J.P.2
-
37
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Jan.
-
J. Demsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
38
-
-
84890433386
-
An efficient approach to integrating radius information into multiple kernel learning
-
Apr.
-
X. W. Liu, L. Wang, J. P. Yin, E. Zhu, and J. Zhang, "An efficient approach to integrating radius information into multiple kernel learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 557-569, Apr. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.2
, pp. 557-569
-
-
Liu, X.W.1
Wang, L.2
Yin, J.P.3
Zhu, E.4
Zhang, J.5
-
39
-
-
84890442548
-
An adaptive approach to learning optimal neighborhood kernels
-
Feb.
-
X. W. Liu et al., "An adaptive approach to learning optimal neighborhood kernels," IEEE Trans. Cybern., vol. 43, no. 1, pp. 371-384, Feb. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.1
, pp. 371-384
-
-
Liu, X.W.1
|