-
1
-
-
84976636850
-
One day ahead wind speed forecasting: a resampling-based approach
-
Zhao, W., Wei, Y.M., Su, Z., One day ahead wind speed forecasting: a resampling-based approach. Appl Energy 178 (2016), 886–901, 10.1016/j.apenergy.2016.06.098.
-
(2016)
Appl Energy
, vol.178
, pp. 886-901
-
-
Zhao, W.1
Wei, Y.M.2
Su, Z.3
-
2
-
-
84983753064
-
A hybrid multi-step rolling forecasting model based on SSA and simulated annealing—adaptive particle swarm optimization for wind speed
-
Du, P., Jin, Y., Zhang, K., A hybrid multi-step rolling forecasting model based on SSA and simulated annealing—adaptive particle swarm optimization for wind speed. Sustainability, 8, 2016, 754, 10.3390/su8080754.
-
(2016)
Sustainability
, vol.8
, pp. 754
-
-
Du, P.1
Jin, Y.2
Zhang, K.3
-
3
-
-
84903179521
-
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
-
Su, Z., Wang, J., Lu, H., Zhao, G., A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers Manage 85 (2014), 443–452, 10.1016/j.enconman.2014.05.058.
-
(2014)
Energy Convers Manage
, vol.85
, pp. 443-452
-
-
Su, Z.1
Wang, J.2
Lu, H.3
Zhao, G.4
-
4
-
-
84947969727
-
Assessing different parameters estimation methods of Weibull distribution to compute wind power density
-
Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., Jalilvand, M., Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers Manage 108 (2016), 322–335, 10.1016/j.enconman.2015.11.015.
-
(2016)
Energy Convers Manage
, vol.108
, pp. 322-335
-
-
Mohammadi, K.1
Alavi, O.2
Mostafaeipour, A.3
Goudarzi, N.4
Jalilvand, M.5
-
5
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
Fan, S., Liao, J.R., Yokoyama, R., Chen, L., Lee, W.J., Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24 (2009), 474–482, 10.1109/TEC.2008.2001457.
-
(2009)
IEEE Trans Energy Convers
, vol.24
, pp. 474-482
-
-
Fan, S.1
Liao, J.R.2
Yokoyama, R.3
Chen, L.4
Lee, W.J.5
-
6
-
-
84958154004
-
Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
-
Meng, A., Ge, J., Yin, H., Chen, S., Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88, 10.1016/j.enconman.2016.02.013.
-
(2016)
Energy Convers Manage
, vol.114
, pp. 75-88
-
-
Meng, A.1
Ge, J.2
Yin, H.3
Chen, S.4
-
7
-
-
84989811566
-
A hybrid wind power forecasting model based on data mining and wavelets analysis
-
Azimi, R., Ghofrani, M., Ghayekhloo, M., A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers Manage 127 (2016), 208–225, 10.1016/j.enconman.2016.09.002.
-
(2016)
Energy Convers Manage
, vol.127
, pp. 208-225
-
-
Azimi, R.1
Ghofrani, M.2
Ghayekhloo, M.3
-
8
-
-
84959301543
-
Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
-
Noorollahi, Y., Jokar, M.A., Kalhor, A., Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manage 115 (2016), 17–25, 10.1016/j.enconman.2016.02.041.
-
(2016)
Energy Convers Manage
, vol.115
, pp. 17-25
-
-
Noorollahi, Y.1
Jokar, M.A.2
Kalhor, A.3
-
9
-
-
84860254202
-
A method for short-term wind power prediction with multiple observation points
-
Khalid, M., Savkin, A.V., A method for short-term wind power prediction with multiple observation points. IEEE Trans Power Syst 27 (2012), 579–586, 10.1109/TPWRS.2011.2160295.
-
(2012)
IEEE Trans Power Syst
, vol.27
, pp. 579-586
-
-
Khalid, M.1
Savkin, A.V.2
-
10
-
-
0342571696
-
Wind energy technology and current status: a review
-
Ackermann, T., Söder, L., Wind energy technology and current status: a review. Renew Sustain Energy Rev 4 (2000), 315–374, 10.1016/S1364-0321(00)00004-6.
-
(2000)
Renew Sustain Energy Rev
, vol.4
, pp. 315-374
-
-
Ackermann, T.1
Söder, L.2
-
11
-
-
84905494402
-
Forecasting wind speed using empirical mode decomposition and Elman neural network
-
Wang, J.J., Zhang, W., Li, Y., Wang, J.J., Dang, Z., Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23 (2014), 452–459, 10.1016/j.asoc.2014.06.027.
-
(2014)
Appl Soft Comput
, vol.23
, pp. 452-459
-
-
Wang, J.J.1
Zhang, W.2
Li, Y.3
Wang, J.J.4
Dang, Z.5
-
12
-
-
84862213628
-
Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
-
Liu, H., Tian, H.Q., Li, Y.F., Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 98 (2012), 415–424, 10.1016/j.apenergy.2012.04.001.
-
(2012)
Appl Energy
, vol.98
, pp. 415-424
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
13
-
-
84946594359
-
An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
-
Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F., An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl Energy 162 (2016), 808–826, 10.1016/j.apenergy.2015.10.145.
-
(2016)
Appl Energy
, vol.162
, pp. 808-826
-
-
Zhao, J.1
Guo, Z.H.2
Su, Z.Y.3
Zhao, Z.Y.4
Xiao, X.5
Liu, F.6
-
14
-
-
0041522327
-
Forecasting and simulating wind speed in Corsica by using an autoregressive model
-
Poggi, P., Muselli, M., Notton, G., Cristofari, C., Louche, A., Forecasting and simulating wind speed in Corsica by using an autoregressive model. Energy Convers Manage 44 (2003), 3177–3196, 10.1016/S0196-8904(03)00108-0.
-
(2003)
Energy Convers Manage
, vol.44
, pp. 3177-3196
-
-
Poggi, P.1
Muselli, M.2
Notton, G.3
Cristofari, C.4
Louche, A.5
-
15
-
-
84903579343
-
A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
-
Babu, C.N., Reddy, B.E., A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl Soft Comput 23 (2014), 27–38, 10.1016/j.asoc.2014.05.028.
-
(2014)
Appl Soft Comput
, vol.23
, pp. 27-38
-
-
Babu, C.N.1
Reddy, B.E.2
-
16
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
Kavasseri, R.G., Seetharaman, K., Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34 (2009), 1388–1393, 10.1016/j.renene.2008.09.006.
-
(2009)
Renew Energy
, vol.34
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
17
-
-
85017562291
-
A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
-
Zhang, C., Zhou, J., Li, C., Fu, W., Peng, T., A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manage 143 (2017), 360–376, 10.1016/j.enconman.2017.04.007.
-
(2017)
Energy Convers Manage
, vol.143
, pp. 360-376
-
-
Zhang, C.1
Zhou, J.2
Li, C.3
Fu, W.4
Peng, T.5
-
18
-
-
85017476969
-
Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
-
Xiao, L., Qian, F., Shao, W., Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm. Energy Convers Manage 143 (2017), 410–430, 10.1016/j.enconman.2017.04.012.
-
(2017)
Energy Convers Manage
, vol.143
, pp. 410-430
-
-
Xiao, L.1
Qian, F.2
Shao, W.3
-
19
-
-
84960381924
-
Forecasting energy market indices with recurrent neural networks: case study of crude oil price fluctuations
-
Wang, J., Wang, J., Forecasting energy market indices with recurrent neural networks: case study of crude oil price fluctuations. Energy 102 (2016), 365–374, 10.1016/j.energy.2016.02.098.
-
(2016)
Energy
, vol.102
, pp. 365-374
-
-
Wang, J.1
Wang, J.2
-
20
-
-
51849142610
-
Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
-
Cadenas, E., Rivera, W., Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew Energy 34 (2009), 274–278, 10.1016/j.renene.2008.03.014.
-
(2009)
Renew Energy
, vol.34
, pp. 274-278
-
-
Cadenas, E.1
Rivera, W.2
-
21
-
-
84892441792
-
Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
-
Ren, C., An, N., Wang, J., Li, L., Hu, B., Shang, D., Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl-Based Syst 56 (2014), 226–239, 10.1016/j.knosys.2013.11.015.
-
(2014)
Knowl-Based Syst
, vol.56
, pp. 226-239
-
-
Ren, C.1
An, N.2
Wang, J.3
Li, L.4
Hu, B.5
Shang, D.6
-
22
-
-
84929923153
-
Short-term probabilistic forecasting of wind speed using stochastic differential equations
-
Iversen, E.B., Morales, J.M., Møller, J.K., Madsen, H., Short-term probabilistic forecasting of wind speed using stochastic differential equations. Int J Forecast 32 (2016), 981–990, 10.1016/j.ijforecast.2015.03.001.
-
(2016)
Int J Forecast
, vol.32
, pp. 981-990
-
-
Iversen, E.B.1
Morales, J.M.2
Møller, J.K.3
Madsen, H.4
-
23
-
-
84897459902
-
A review of combined approaches for prediction of short-term wind speed and power
-
Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34 (2014), 243–254, 10.1016/j.rser.2014.03.033.
-
(2014)
Renew Sustain Energy Rev
, vol.34
, pp. 243-254
-
-
Tascikaraoglu, A.1
Uzunoglu, M.2
-
24
-
-
84980410056
-
Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
-
Xiao, L., Shao, W., Wang, C., Zhang, K., Lu, H., Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting. Appl Energy 180 (2016), 213–233, 10.1016/j.apenergy.2016.07.113.
-
(2016)
Appl Energy
, vol.180
, pp. 213-233
-
-
Xiao, L.1
Shao, W.2
Wang, C.3
Zhang, K.4
Lu, H.5
-
25
-
-
85010282413
-
A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
-
Zhang, W., Qu, Z., Zhang, K., Mao, W., Ma, Y., Fan, X., A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers Manage 136 (2017), 439–451, 10.1016/j.enconman.2017.01.022.
-
(2017)
Energy Convers Manage
, vol.136
, pp. 439-451
-
-
Zhang, W.1
Qu, Z.2
Zhang, K.3
Mao, W.4
Ma, Y.5
Fan, X.6
-
26
-
-
84922796172
-
Combined forecasting models for wind energy forecasting: a case study in China
-
Xiao, L., Wang, J., Dong, Y., Wu, J., Combined forecasting models for wind energy forecasting: a case study in China. Renew Sustain Energy Rev 44 (2015), 271–288, 10.1016/j.rser.2014.12.012.
-
(2015)
Renew Sustain Energy Rev
, vol.44
, pp. 271-288
-
-
Xiao, L.1
Wang, J.2
Dong, Y.3
Wu, J.4
-
27
-
-
84995617473
-
Air quality early-warning system for cities in China
-
Xu, Y., Yang, W., Wang, J., Air quality early-warning system for cities in China. Atmos Environ 148 (2017), 239–257, 10.1016/j.atmosenv.2016.10.046.
-
(2017)
Atmos Environ
, vol.148
, pp. 239-257
-
-
Xu, Y.1
Yang, W.2
Wang, J.3
-
28
-
-
84858001572
-
A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
-
Tang, L., Yu, L., Wang, S., Li, J., Wang, S., A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl Energy 93 (2012), 432–443, 10.1016/j.apenergy.2011.12.030.
-
(2012)
Appl Energy
, vol.93
, pp. 432-443
-
-
Tang, L.1
Yu, L.2
Wang, S.3
Li, J.4
Wang, S.5
-
29
-
-
84962148959
-
Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
-
Wang, S., Zhang, N., Wu, L., Wang, Y., Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94 (2016), 629–636, 10.1016/j.renene.2016.03.103.
-
(2016)
Renew Energy
, vol.94
, pp. 629-636
-
-
Wang, S.1
Zhang, N.2
Wu, L.3
Wang, Y.4
-
30
-
-
84994644911
-
A hybrid non-dominated sorting genetic algorithm and its application on multi-objective optimal design of nuclear power plant
-
Chen, L., Yan, C., Liao, Y., Song, F., Jia, Z., A hybrid non-dominated sorting genetic algorithm and its application on multi-objective optimal design of nuclear power plant. Ann Nucl Energy 100 (2017), 150–159, 10.1016/j.anucene.2016.09.030.
-
(2017)
Ann Nucl Energy
, vol.100
, pp. 150-159
-
-
Chen, L.1
Yan, C.2
Liao, Y.3
Song, F.4
Jia, Z.5
-
31
-
-
85008420154
-
An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
-
Lu, C., Li, X., Gao, L., Liao, W., Yi, J., An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Comput Ind Eng 104 (2017), 156–174, 10.1016/j.cie.2016.12.020.
-
(2017)
Comput Ind Eng
, vol.104
, pp. 156-174
-
-
Lu, C.1
Li, X.2
Gao, L.3
Liao, W.4
Yi, J.5
-
32
-
-
84979263751
-
Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
-
Mirjalili, S., Jangir, P., Saremi, S., Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46 (2017), 79–95, 10.1007/s10489-016-0825-8.
-
(2017)
Appl Intell
, vol.46
, pp. 79-95
-
-
Mirjalili, S.1
Jangir, P.2
Saremi, S.3
-
33
-
-
79956369785
-
Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
-
Yeh, J.-R., Shieh, J.-S., Huang, N.E., Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2 (2010), 135–156, 10.1142/S1793536910000422.
-
(2010)
Adv Adapt Data Anal
, vol.2
, pp. 135-156
-
-
Yeh, J.-R.1
Shieh, J.-S.2
Huang, N.E.3
-
34
-
-
80052078099
-
Ensemble empirical mode decomposition: a noise-assisted data analysis method
-
Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1 (2009), 1–41, 10.1142/S1793536909000047.
-
(2009)
Adv Adapt Data Anal
, vol.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
-
35
-
-
0003953570
-
Mathematical physics
-
Keagan London (England)
-
Edgeworth, F.Y., Mathematical physics. 1881, Keagan, London (England).
-
(1881)
-
-
Edgeworth, F.Y.1
-
36
-
-
0003733205
-
Cours d'economie politique
-
Librairie Droz
-
Pareto, V., Cours d'economie politique. 1964, Librairie Droz.
-
(1964)
-
-
Pareto, V.1
-
37
-
-
33847371627
-
Pareto multi objective optimization
-
Ngatchou, P., Zarei, A., El-Sharkawi, A., Pareto multi objective optimization. Proc 13th int conf on intell syst appl to power syst, 2005, 84–91.
-
(2005)
Proc 13th int conf on intell syst appl to power syst
, pp. 84-91
-
-
Ngatchou, P.1
Zarei, A.2
El-Sharkawi, A.3
-
38
-
-
84956971491
-
Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
-
Raju, M., Saikia, L.C., Sinha, N., Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller. Int J Electr Power Energy Syst 80 (2016), 52–63, 10.1016/j.ijepes.2016.01.037.
-
(2016)
Int J Electr Power Energy Syst
, vol.80
, pp. 52-63
-
-
Raju, M.1
Saikia, L.C.2
Sinha, N.3
-
39
-
-
26444565569
-
Finding structure in time
-
Elman, J.L., Finding structure in time. Cogn Sci 14 (1990), 179–211.
-
(1990)
Cogn Sci
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
41
-
-
0031891445
-
A sequential learning approach for single hidden layer neural networks
-
Zhang, J., Morris, A.J., A sequential learning approach for single hidden layer neural networks. Neural Netw 11 (1998), 65–80.
-
(1998)
Neural Netw
, vol.11
, pp. 65-80
-
-
Zhang, J.1
Morris, A.J.2
-
42
-
-
85006900517
-
A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting
-
Jiang, P., Liu, F., Song, Y., A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting. Energy 119 (2017), 694–709, 10.1016/j.energy.2016.11.034.
-
(2017)
Energy
, vol.119
, pp. 694-709
-
-
Jiang, P.1
Liu, F.2
Song, Y.3
|