-
1
-
-
85017549103
-
Wind energy in China: estimating the potential
-
[1] Yuan, J., Wind energy in China: estimating the potential. Nat Energy, 1, 2016, 16095.
-
(2016)
Nat Energy
, vol.1
, pp. 16095
-
-
Yuan, J.1
-
2
-
-
78650045524
-
-
A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium (NAPS). IEEE; 2010. p. 1–8.
-
[2] Soman SS, Zareipour H, Malik O, et al. A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium (NAPS). IEEE; 2010. p. 1–8.
-
-
-
Soman, S.S.1
Zareipour, H.2
Malik, O.3
-
3
-
-
84938087297
-
Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
-
[3] Zhang, J., Draxl, C., Hopson, T., et al. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy 156 (2015), 528–541.
-
(2015)
Appl Energy
, vol.156
, pp. 528-541
-
-
Zhang, J.1
Draxl, C.2
Hopson, T.3
-
4
-
-
84954424030
-
Linear and non-linear autoregressive models for short-term wind speed forecasting
-
[4] Lydia, M., Kumar, S.S., Selvakumar, A.I., et al. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
-
(2016)
Energy Convers Manage
, vol.112
, pp. 115-124
-
-
Lydia, M.1
Kumar, S.S.2
Selvakumar, A.I.3
-
5
-
-
84959329983
-
Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
-
[5] Cadenas, E., Rivera, W., Campos-Amezcua, R., et al. Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies, 9(2), 2016, 109.
-
(2016)
Energies
, vol.9
, Issue.2
, pp. 109
-
-
Cadenas, E.1
Rivera, W.2
Campos-Amezcua, R.3
-
6
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
[6] Li, G., Shi, J., On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87:7 (2010), 2313–2320.
-
(2010)
Appl Energy
, vol.87
, Issue.7
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
7
-
-
84962148959
-
Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
-
[7] Wang, S., Zhang, N., Wu, L., et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94 (2016), 629–636.
-
(2016)
Renew Energy
, vol.94
, pp. 629-636
-
-
Wang, S.1
Zhang, N.2
Wu, L.3
-
8
-
-
84958154004
-
Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
-
[8] Meng, A., Ge, J., Yin, H., et al. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88.
-
(2016)
Energy Convers Manage
, vol.114
, pp. 75-88
-
-
Meng, A.1
Ge, J.2
Yin, H.3
-
9
-
-
84969542921
-
A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
-
[9] Aghajani, A., Kazemzadeh, R., Ebrahimi, A., A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm. Energy Convers Manage 121 (2016), 232–240.
-
(2016)
Energy Convers Manage
, vol.121
, pp. 232-240
-
-
Aghajani, A.1
Kazemzadeh, R.2
Ebrahimi, A.3
-
10
-
-
84930947539
-
New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind evolutionary algorithm and artificial neural networks
-
[10] Liu, H., Tian, H., Liang, X., et al. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind evolutionary algorithm and artificial neural networks. Renew Energy 83 (2015), 1066–1075.
-
(2015)
Renew Energy
, vol.83
, pp. 1066-1075
-
-
Liu, H.1
Tian, H.2
Liang, X.3
-
11
-
-
84905494402
-
Forecasting wind speed using empirical mode decomposition and Elman neural network
-
[11] Wang, J., Zhang, W., Li, Y., et al. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23 (2014), 452–459.
-
(2014)
Appl Soft Comput
, vol.23
, pp. 452-459
-
-
Wang, J.1
Zhang, W.2
Li, Y.3
-
12
-
-
84939789758
-
Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
-
[12] Liu, H., Tian, H., Liang, X., et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl Energy 157 (2015), 183–194.
-
(2015)
Appl Energy
, vol.157
, pp. 183-194
-
-
Liu, H.1
Tian, H.2
Liang, X.3
-
13
-
-
84921916753
-
A self-adaptive hybrid approach for wind speed forecasting
-
[13] Wang, J., Hu, J., Ma, K., et al. A self-adaptive hybrid approach for wind speed forecasting. Renew Energy 78 (2015), 374–385.
-
(2015)
Renew Energy
, vol.78
, pp. 374-385
-
-
Wang, J.1
Hu, J.2
Ma, K.3
-
14
-
-
84904741064
-
Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach
-
[14] Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., et al. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach. Energy Convers Manage 87 (2014), 10–18.
-
(2014)
Energy Convers Manage
, vol.87
, pp. 10-18
-
-
Salcedo-Sanz, S.1
Pastor-Sánchez, A.2
Prieto, L.3
-
15
-
-
84958759376
-
Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
-
[15] Sun, W., Liu, M., Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers Manage 114 (2016), 197–208.
-
(2016)
Energy Convers Manage
, vol.114
, pp. 197-208
-
-
Sun, W.1
Liu, M.2
-
16
-
-
84971472399
-
A new intelligent method based on combination of VMD and ELM for short term wind power forecasting
-
[16] Abdoos, A.A., A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 203 (2016), 111–120.
-
(2016)
Neurocomputing
, vol.203
, pp. 111-120
-
-
Abdoos, A.A.1
-
17
-
-
84884126948
-
Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
-
[17] Liu, D., Niu, D., Wang, H., et al. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
-
(2014)
Renew Energy
, vol.62
, pp. 592-597
-
-
Liu, D.1
Niu, D.2
Wang, H.3
-
18
-
-
84938206905
-
Wind speed prediction using reduced support vector machines with feature selection
-
[18] Kong, X., Liu, X., Shi, R., et al. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456.
-
(2015)
Neurocomputing
, vol.169
, pp. 449-456
-
-
Kong, X.1
Liu, X.2
Shi, R.3
-
19
-
-
84983063551
-
Multistep forecasting for short-term wind speed using an optimized extreme learning machine network with decomposition-based signal filtering
-
[19] Zhao, J., Wang, J., Liu, F., Multistep forecasting for short-term wind speed using an optimized extreme learning machine network with decomposition-based signal filtering. J Energy Eng, 142(3), 2015, 04015036.
-
(2015)
J Energy Eng
, vol.142
, Issue.3
, pp. 04015036
-
-
Zhao, J.1
Wang, J.2
Liu, F.3
-
20
-
-
84995404931
-
Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings
-
[20] Luo, M., Li, C., Zhang, X., et al. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65 (2016), 556–566.
-
(2016)
ISA Trans
, vol.65
, pp. 556-566
-
-
Luo, M.1
Li, C.2
Zhang, X.3
-
21
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
[21] Osório, G.J., Matias, J.C.O., Catalão, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
-
(2015)
Renew Energy
, vol.75
, pp. 301-307
-
-
Osório, G.J.1
Matias, J.C.O.2
Catalão, J.P.S.3
-
22
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
[22] Guo, Z., Zhao, W., Lu, H., et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:1 (2012), 241–249.
-
(2012)
Renew Energy
, vol.37
, Issue.1
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
-
23
-
-
84893418756
-
Variational mode decomposition
-
[23] Dragomiretskiy, K., Zosso, D., Variational mode decomposition. IEEE Trans Signal Process 62:3 (2014), 531–544.
-
(2014)
IEEE Trans Signal Process
, vol.62
, Issue.3
, pp. 531-544
-
-
Dragomiretskiy, K.1
Zosso, D.2
-
24
-
-
84955259754
-
Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
-
[24] Zhang, Y., Liu, K., Qin, L., et al. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Convers Manage 112 (2016), 208–219.
-
(2016)
Energy Convers Manage
, vol.112
, pp. 208-219
-
-
Zhang, Y.1
Liu, K.2
Qin, L.3
-
25
-
-
84926429452
-
An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
-
[25] Ahila, R., Sadasivam, V., Manimala, K., An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Appl Soft Comput 32 (2015), 23–37.
-
(2015)
Appl Soft Comput
, vol.32
, pp. 23-37
-
-
Ahila, R.1
Sadasivam, V.2
Manimala, K.3
-
26
-
-
85027022766
-
Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices
-
[26] Lahmiri, S., Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices. IEEE Syst J, 2015.
-
(2015)
IEEE Syst J
-
-
Lahmiri, S.1
-
27
-
-
0003991806
-
Statistical learning theory
-
Wiley New York
-
[27] Vapnik, V.N., Vapnik, V., Statistical learning theory. 1998, Wiley, New York.
-
(1998)
-
-
Vapnik, V.N.1
Vapnik, V.2
-
28
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
[28] Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE international joint conference on neural networks, vol. 2, 2004, 985–990.
-
(2004)
IEEE international joint conference on neural networks
, vol.2
, pp. 985-990
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
29
-
-
84875414061
-
Backtracking search optimization algorithm for numerical optimization problems
-
[29] Civicioglu, P., Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:15 (2013), 8121–8144.
-
(2013)
Appl Math Comput
, vol.219
, Issue.15
, pp. 8121-8144
-
-
Civicioglu, P.1
-
30
-
-
84962050754
-
Using data-driven approach for wind power prediction: a comparative study
-
[30] Renani, E.T., Elias, M.F.M., Rahim, N.A., Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manage 118 (2016), 193–203.
-
(2016)
Energy Convers Manage
, vol.118
, pp. 193-203
-
-
Renani, E.T.1
Elias, M.F.M.2
Rahim, N.A.3
-
31
-
-
84971463434
-
Development of an enhanced parametric model for wind turbine power curve
-
[31] Taslimi-Renani, E., Modiri-Delshad, M., Elias, M.F.M., et al. Development of an enhanced parametric model for wind turbine power curve. Appl Energy 177 (2016), 544–552.
-
(2016)
Appl Energy
, vol.177
, pp. 544-552
-
-
Taslimi-Renani, E.1
Modiri-Delshad, M.2
Elias, M.F.M.3
-
32
-
-
85006997012
-
Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm
-
[32] Ahmed, M.S., Mohamed, A., Khatib, T., et al. Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build 138 (2017), 215–227.
-
(2017)
Energy Build
, vol.138
, pp. 215-227
-
-
Ahmed, M.S.1
Mohamed, A.2
Khatib, T.3
|