메뉴 건너뛰기




Volumn 143, Issue , 2017, Pages 360-376

A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting

Author keywords

Backtracking search algorithm; Extreme learning machine; Feature selection; Parameter optimization; Variational mode decomposition; Wind speed forecasting

Indexed keywords

AUTOCORRELATION; ELECTRIC POWER GENERATION; ELECTRIC UTILITIES; FEATURE EXTRACTION; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PARAMETER ESTIMATION; SIGNAL PROCESSING; SPEED; WIND POWER;

EID: 85017562291     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2017.04.007     Document Type: Article
Times cited : (247)

References (32)
  • 1
    • 85017549103 scopus 로고    scopus 로고
    • Wind energy in China: estimating the potential
    • [1] Yuan, J., Wind energy in China: estimating the potential. Nat Energy, 1, 2016, 16095.
    • (2016) Nat Energy , vol.1 , pp. 16095
    • Yuan, J.1
  • 2
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium (NAPS). IEEE; 2010. p. 1–8.
    • [2] Soman SS, Zareipour H, Malik O, et al. A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium (NAPS). IEEE; 2010. p. 1–8.
    • Soman, S.S.1    Zareipour, H.2    Malik, O.3
  • 3
    • 84938087297 scopus 로고    scopus 로고
    • Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods
    • [3] Zhang, J., Draxl, C., Hopson, T., et al. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy 156 (2015), 528–541.
    • (2015) Appl Energy , vol.156 , pp. 528-541
    • Zhang, J.1    Draxl, C.2    Hopson, T.3
  • 4
    • 84954424030 scopus 로고    scopus 로고
    • Linear and non-linear autoregressive models for short-term wind speed forecasting
    • [4] Lydia, M., Kumar, S.S., Selvakumar, A.I., et al. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
    • (2016) Energy Convers Manage , vol.112 , pp. 115-124
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3
  • 5
    • 84959329983 scopus 로고    scopus 로고
    • Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
    • [5] Cadenas, E., Rivera, W., Campos-Amezcua, R., et al. Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies, 9(2), 2016, 109.
    • (2016) Energies , vol.9 , Issue.2 , pp. 109
    • Cadenas, E.1    Rivera, W.2    Campos-Amezcua, R.3
  • 6
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • [6] Li, G., Shi, J., On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87:7 (2010), 2313–2320.
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 7
    • 84962148959 scopus 로고    scopus 로고
    • Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
    • [7] Wang, S., Zhang, N., Wu, L., et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew Energy 94 (2016), 629–636.
    • (2016) Renew Energy , vol.94 , pp. 629-636
    • Wang, S.1    Zhang, N.2    Wu, L.3
  • 8
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • [8] Meng, A., Ge, J., Yin, H., et al. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88.
    • (2016) Energy Convers Manage , vol.114 , pp. 75-88
    • Meng, A.1    Ge, J.2    Yin, H.3
  • 9
    • 84969542921 scopus 로고    scopus 로고
    • A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
    • [9] Aghajani, A., Kazemzadeh, R., Ebrahimi, A., A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm. Energy Convers Manage 121 (2016), 232–240.
    • (2016) Energy Convers Manage , vol.121 , pp. 232-240
    • Aghajani, A.1    Kazemzadeh, R.2    Ebrahimi, A.3
  • 10
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind evolutionary algorithm and artificial neural networks
    • [10] Liu, H., Tian, H., Liang, X., et al. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind evolutionary algorithm and artificial neural networks. Renew Energy 83 (2015), 1066–1075.
    • (2015) Renew Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3
  • 11
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • [11] Wang, J., Zhang, W., Li, Y., et al. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23 (2014), 452–459.
    • (2014) Appl Soft Comput , vol.23 , pp. 452-459
    • Wang, J.1    Zhang, W.2    Li, Y.3
  • 12
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • [12] Liu, H., Tian, H., Liang, X., et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl Energy 157 (2015), 183–194.
    • (2015) Appl Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.2    Liang, X.3
  • 13
    • 84921916753 scopus 로고    scopus 로고
    • A self-adaptive hybrid approach for wind speed forecasting
    • [13] Wang, J., Hu, J., Ma, K., et al. A self-adaptive hybrid approach for wind speed forecasting. Renew Energy 78 (2015), 374–385.
    • (2015) Renew Energy , vol.78 , pp. 374-385
    • Wang, J.1    Hu, J.2    Ma, K.3
  • 14
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach
    • [14] Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., et al. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach. Energy Convers Manage 87 (2014), 10–18.
    • (2014) Energy Convers Manage , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Prieto, L.3
  • 15
    • 84958759376 scopus 로고    scopus 로고
    • Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
    • [15] Sun, W., Liu, M., Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers Manage 114 (2016), 197–208.
    • (2016) Energy Convers Manage , vol.114 , pp. 197-208
    • Sun, W.1    Liu, M.2
  • 16
    • 84971472399 scopus 로고    scopus 로고
    • A new intelligent method based on combination of VMD and ELM for short term wind power forecasting
    • [16] Abdoos, A.A., A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 203 (2016), 111–120.
    • (2016) Neurocomputing , vol.203 , pp. 111-120
    • Abdoos, A.A.1
  • 17
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • [17] Liu, D., Niu, D., Wang, H., et al. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3
  • 18
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • [18] Kong, X., Liu, X., Shi, R., et al. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456.
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3
  • 19
    • 84983063551 scopus 로고    scopus 로고
    • Multistep forecasting for short-term wind speed using an optimized extreme learning machine network with decomposition-based signal filtering
    • [19] Zhao, J., Wang, J., Liu, F., Multistep forecasting for short-term wind speed using an optimized extreme learning machine network with decomposition-based signal filtering. J Energy Eng, 142(3), 2015, 04015036.
    • (2015) J Energy Eng , vol.142 , Issue.3 , pp. 04015036
    • Zhao, J.1    Wang, J.2    Liu, F.3
  • 20
    • 84995404931 scopus 로고    scopus 로고
    • Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings
    • [20] Luo, M., Li, C., Zhang, X., et al. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans 65 (2016), 556–566.
    • (2016) ISA Trans , vol.65 , pp. 556-566
    • Luo, M.1    Li, C.2    Zhang, X.3
  • 21
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • [21] Osório, G.J., Matias, J.C.O., Catalão, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Catalão, J.P.S.3
  • 22
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • [22] Guo, Z., Zhao, W., Lu, H., et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:1 (2012), 241–249.
    • (2012) Renew Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3
  • 24
    • 84955259754 scopus 로고    scopus 로고
    • Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
    • [24] Zhang, Y., Liu, K., Qin, L., et al. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Convers Manage 112 (2016), 208–219.
    • (2016) Energy Convers Manage , vol.112 , pp. 208-219
    • Zhang, Y.1    Liu, K.2    Qin, L.3
  • 25
    • 84926429452 scopus 로고    scopus 로고
    • An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
    • [25] Ahila, R., Sadasivam, V., Manimala, K., An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Appl Soft Comput 32 (2015), 23–37.
    • (2015) Appl Soft Comput , vol.32 , pp. 23-37
    • Ahila, R.1    Sadasivam, V.2    Manimala, K.3
  • 26
    • 85027022766 scopus 로고    scopus 로고
    • Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices
    • [26] Lahmiri, S., Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices. IEEE Syst J, 2015.
    • (2015) IEEE Syst J
    • Lahmiri, S.1
  • 27
    • 0003991806 scopus 로고    scopus 로고
    • Statistical learning theory
    • Wiley New York
    • [27] Vapnik, V.N., Vapnik, V., Statistical learning theory. 1998, Wiley, New York.
    • (1998)
    • Vapnik, V.N.1    Vapnik, V.2
  • 29
    • 84875414061 scopus 로고    scopus 로고
    • Backtracking search optimization algorithm for numerical optimization problems
    • [29] Civicioglu, P., Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:15 (2013), 8121–8144.
    • (2013) Appl Math Comput , vol.219 , Issue.15 , pp. 8121-8144
    • Civicioglu, P.1
  • 30
    • 84962050754 scopus 로고    scopus 로고
    • Using data-driven approach for wind power prediction: a comparative study
    • [30] Renani, E.T., Elias, M.F.M., Rahim, N.A., Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manage 118 (2016), 193–203.
    • (2016) Energy Convers Manage , vol.118 , pp. 193-203
    • Renani, E.T.1    Elias, M.F.M.2    Rahim, N.A.3
  • 31
    • 84971463434 scopus 로고    scopus 로고
    • Development of an enhanced parametric model for wind turbine power curve
    • [31] Taslimi-Renani, E., Modiri-Delshad, M., Elias, M.F.M., et al. Development of an enhanced parametric model for wind turbine power curve. Appl Energy 177 (2016), 544–552.
    • (2016) Appl Energy , vol.177 , pp. 544-552
    • Taslimi-Renani, E.1    Modiri-Delshad, M.2    Elias, M.F.M.3
  • 32
    • 85006997012 scopus 로고    scopus 로고
    • Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm
    • [32] Ahmed, M.S., Mohamed, A., Khatib, T., et al. Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build 138 (2017), 215–227.
    • (2017) Energy Build , vol.138 , pp. 215-227
    • Ahmed, M.S.1    Mohamed, A.2    Khatib, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.