메뉴 건너뛰기




Volumn 143, Issue , 2017, Pages 410-430

Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm

Author keywords

Hybrid forecasting architecture; Improved bat algorithm; Singular spectrum analysis, wind speed forecasting

Indexed keywords

CONJUGATE GRADIENT METHOD; NETWORK ARCHITECTURE; NETWORK LAYERS; NEURAL NETWORKS; SPECTRUM ANALYSIS; SPEED; WIND EFFECTS; WIND POWER;

EID: 85017476969     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2017.04.012     Document Type: Article
Times cited : (111)

References (56)
  • 1
    • 84874908412 scopus 로고    scopus 로고
    • A new approach to very short term wind speed prediction using k-nearest neighbor classification
    • [1] Yesilbudak, M., Sagiroglu, S., Colak, I., A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Convers Manage 69:69 (2013), 77–86.
    • (2013) Energy Convers Manage , vol.69 , Issue.69 , pp. 77-86
    • Yesilbudak, M.1    Sagiroglu, S.2    Colak, I.3
  • 2
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • [2] Meng, A., Ge, J., Yin, H., Chen, S., Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manage 114 (2016), 75–88.
    • (2016) Energy Convers Manage , vol.114 , pp. 75-88
    • Meng, A.1    Ge, J.2    Yin, H.3    Chen, S.4
  • 3
    • 84966430877 scopus 로고    scopus 로고
    • Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region
    • [3] Ozay, C., Celiktas, M.S., Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers Manage 121 (2016), 49–54.
    • (2016) Energy Convers Manage , vol.121 , pp. 49-54
    • Ozay, C.1    Celiktas, M.S.2
  • 4
    • 84920167958 scopus 로고    scopus 로고
    • Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
    • [4] Liu, H., Tian, H.Q., Li, Y.F., Zhang, L., Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers Manage 92:92 (2015), 67–81.
    • (2015) Energy Convers Manage , vol.92 , Issue.92 , pp. 67-81
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3    Zhang, L.4
  • 5
    • 68049131207 scopus 로고    scopus 로고
    • Performance of wind power industry development in China: a DiamondModel study
    • [5] Zhao, Z.Y., Hu, J., Zuo, J., Performance of wind power industry development in China: a DiamondModel study. Renew Energy 34:12 (2009), 2883–2891.
    • (2009) Renew Energy , vol.34 , Issue.12 , pp. 2883-2891
    • Zhao, Z.Y.1    Hu, J.2    Zuo, J.3
  • 6
    • 84984985171 scopus 로고    scopus 로고
    • A Gaussian process regression based hybrid approach for short-term wind speed prediction
    • [6] Zhang, C., Wei, H., Zhao, X., Liu, T., Zhang, K., A Gaussian process regression based hybrid approach for short-term wind speed prediction. Energy Convers Manage 126 (2016), 1084–1092.
    • (2016) Energy Convers Manage , vol.126 , pp. 1084-1092
    • Zhang, C.1    Wei, H.2    Zhao, X.3    Liu, T.4    Zhang, K.5
  • 7
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • [7] Liu, H., Tian, H., Li, Y., Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 100 (2015), 16–22.
    • (2015) Energy Convers Manage , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 8
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • [8] Zhou, J., Jing, S., Gong, L., Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 52:4 (2011), 1990–1998.
    • (2011) Energy Convers Manage , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Jing, S.2    Gong, L.3
  • 9
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • [9] Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., Yan, Z., A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13:4 (2009), 915–920.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.4 , pp. 915-920
    • Lei, M.1    Shiyan, L.2    Chuanwen, J.3    Hongling, L.4    Yan, Z.5
  • 10
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • [10] Landberg, L., Short-term prediction of the power production from wind farms. J Wind Eng Ind Aerodyn 80 (1999), 207–220.
    • (1999) J Wind Eng Ind Aerodyn , vol.80 , pp. 207-220
    • Landberg, L.1
  • 13
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • [13] Riahy, G.H., Abedi, M., Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew Energy 33:1 (2008), 35–41.
    • (2008) Renew Energy , vol.33 , Issue.1 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 14
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • [14] Ma, L., Luan, S.Y., Jiang, C.W., Liu, H.L., Zhang, Y., A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13 (2009), 915–920.
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 915-920
    • Ma, L.1    Luan, S.Y.2    Jiang, C.W.3    Liu, H.L.4    Zhang, Y.5
  • 15
    • 84905670743 scopus 로고    scopus 로고
    • A hybrid model based on data preprocessing for electrical power forecasting
    • [15] Xiao, L., Wang, J., Yang, X., Xiao, L., A hybrid model based on data preprocessing for electrical power forecasting. Int J Electr Power Energy Syst 64:64 (2015), 311–327.
    • (2015) Int J Electr Power Energy Syst , vol.64 , Issue.64 , pp. 311-327
    • Xiao, L.1    Wang, J.2    Yang, X.3    Xiao, L.4
  • 16
    • 84954424030 scopus 로고    scopus 로고
    • Linear and non-linear autoregressive models for short-term wind speed forecasting
    • [16] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P., Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
    • (2016) Energy Convers Manage , vol.112 , pp. 115-124
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3    Kumar, G.E.P.4
  • 17
    • 84959301543 scopus 로고    scopus 로고
    • Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
    • [17] Noorollahi, Y., Jokar, M.A., Kalhor, A., Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manage 115 (2016), 17–25.
    • (2016) Energy Convers Manage , vol.115 , pp. 17-25
    • Noorollahi, Y.1    Jokar, M.A.2    Kalhor, A.3
  • 18
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • [18] Barbounis, T.G., Theocharis, J.B., A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 70:7/9 (2007), 1525–1542.
    • (2007) Neurocomputing , vol.70 , Issue.7/9 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 19
    • 0036504289 scopus 로고    scopus 로고
    • Short-term prediction of the aggregated power output of wind farms – a statistical analysis of the reduction of the prediction error by spatial smoothing effects
    • [19] Focken, U., Lange, M., Moonnich, K., Waldl, H.-P., Georg Beyer, H., Luig, A., Short-term prediction of the aggregated power output of wind farms – a statistical analysis of the reduction of the prediction error by spatial smoothing effects. J Wind Eng Ind Aerodyn 90:3 (2002), 231–246.
    • (2002) J Wind Eng Ind Aerodyn , vol.90 , Issue.3 , pp. 231-246
    • Focken, U.1    Lange, M.2    Moonnich, K.3    Waldl, H.-P.4    Georg Beyer, H.5    Luig, A.6
  • 20
    • 84958158929 scopus 로고    scopus 로고
    • An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
    • [20] Niu, M., Sun, S., Wu, J., Yu, L., Wang, J., An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl Math Model 40:5–6 (2016), 4079–4093.
    • (2016) Appl Math Model , vol.40 , Issue.5-6 , pp. 4079-4093
    • Niu, M.1    Sun, S.2    Wu, J.3    Yu, L.4    Wang, J.5
  • 21
    • 84980410056 scopus 로고    scopus 로고
    • Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
    • [21] Xiao, L., Shao, W., Wang, C., Zhang, K., Lu, H., Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting. Appl Energy 180:C (2016), 213–233.
    • (2016) Appl Energy , vol.180 , Issue.100 , pp. 213-233
    • Xiao, L.1    Shao, W.2    Wang, C.3    Zhang, K.4    Lu, H.5
  • 22
    • 84903179521 scopus 로고    scopus 로고
    • A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • [22] Su, Z., Wang, J., Lu, H., Zhao, G., A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers Manage 85:9 (2014), 443–452.
    • (2014) Energy Convers Manage , vol.85 , Issue.9 , pp. 443-452
    • Su, Z.1    Wang, J.2    Lu, H.3    Zhao, G.4
  • 23
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • [23] Monfared, M., Rastegar, H., Kojabadi, H.M., A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34 (2009), 845–848.
    • (2009) Renew Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 24
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • [24] Cadenas, E., Rivera, W., Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew Energy 34:1 (2009), 274–278.
    • (2009) Renew Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 25
    • 84957805665 scopus 로고    scopus 로고
    • A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
    • [25] Xiao, L., Shao, W., Liang, T., Wang, C., A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl Energy 167 (2016), 135–153.
    • (2016) Appl Energy , vol.167 , pp. 135-153
    • Xiao, L.1    Shao, W.2    Liang, T.3    Wang, C.4
  • 26
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • [26] Sfetsos, A., A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew Energy 21:1 (2000), 23–35.
    • (2000) Renew Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 28
    • 84884263982 scopus 로고    scopus 로고
    • Multi-step wind speed forecasting based on wavelet and gaussian processes
    • [28] Chen, N., Qian, Z., Meng, X., Multi-step wind speed forecasting based on wavelet and gaussian processes. Math Probl Eng, 2013.
    • (2013) Math Probl Eng
    • Chen, N.1    Qian, Z.2    Meng, X.3
  • 29
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • [29] Liu, H., Tian, H.-Q., Pan, D.-F., Li, Y.-F., Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 107 (2013), 191–208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.-Q.2    Pan, D.-F.3    Li, Y.-F.4
  • 30
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • [30] Liu, H., Chen, C., Tian, H.-Q., Li, Y.-F., A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48 (2012), 545–556.
    • (2012) Renew Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.-Q.3    Li, Y.-F.4
  • 31
    • 84893188504 scopus 로고    scopus 로고
    • A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
    • [31] Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
    • Wang, Y.1    Wang, S.2    Zhang, N.3
  • 32
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
    • [32] Liu, H., Tian, H.-Q., Li, Y.-F., Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers Manage 89 (2014), 1–11.
    • (2014) Energy Convers Manage , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 33
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • [33] Liu, H., Tian, H.-Q., Chen, C., Li, Y.-F., An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int J Electr Power Energy Syst 52:1 (2013), 161–173.
    • (2013) Int J Electr Power Energy Syst , vol.52 , Issue.1 , pp. 161-173
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.-F.4
  • 34
    • 79959931064 scopus 로고    scopus 로고
    • Wind speed prediction for a target station using neural networks and particle swarm optimization
    • [34] Poitras, G., Cormier, G., Wind speed prediction for a target station using neural networks and particle swarm optimization. Wind Eng 35:3 (2011), 369–380.
    • (2011) Wind Eng , vol.35 , Issue.3 , pp. 369-380
    • Poitras, G.1    Cormier, G.2
  • 36
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • [36] Xiao, L., Wang, J., Hou, R., Wu, J., A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82 (2015), 524–549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3    Wu, J.4
  • 38
    • 84890765779 scopus 로고    scopus 로고
    • Bat algorithm: literature review and applications
    • [38] Yang, X.S., Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5:3 (2013), 141–149.
    • (2013) Int J Bio-Inspired Comput , vol.5 , Issue.3 , pp. 141-149
    • Yang, X.S.1
  • 39
    • 84869764631 scopus 로고    scopus 로고
    • Image matching using a bat algorithm with mutation
    • [39] Du, Z.Y., Liu, B., Image matching using a bat algorithm with mutation. Appl Mech Mater 203 (2012), 88–93.
    • (2012) Appl Mech Mater , vol.203 , pp. 88-93
    • Du, Z.Y.1    Liu, B.2
  • 40
    • 84880528363 scopus 로고    scopus 로고
    • A new meta-heuristic bat inspired classification approach for microarray data
    • [40] Mishra, S., Shaw, K., Mishra, D., A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol 4 (2012), 802–806.
    • (2012) Procedia Technol , vol.4 , pp. 802-806
    • Mishra, S.1    Shaw, K.2    Mishra, D.3
  • 42
    • 84884845314 scopus 로고    scopus 로고
    • A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market
    • [42] Niknam, T., Sharifinia, S., Abaraghooee, R.A., A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market. Energy Convers Manage 76 (2013), 1015–1028.
    • (2013) Energy Convers Manage , vol.76 , pp. 1015-1028
    • Niknam, T.1    Sharifinia, S.2    Abaraghooee, R.A.3
  • 43
    • 84898942339 scopus 로고    scopus 로고
    • Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm
    • [43] Sambariya, D.K., Prasad, R., Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int J Electr Power Energy Syst 61 (2014), 229–238.
    • (2014) Int J Electr Power Energy Syst , vol.61 , pp. 229-238
    • Sambariya, D.K.1    Prasad, R.2
  • 44
    • 84898966331 scopus 로고    scopus 로고
    • Wind forecasting using Principal Component Analysis
    • [44] Skittides, C., Früh, W.G., Wind forecasting using Principal Component Analysis. Renew Energy 69:September (2014), 365–374.
    • (2014) Renew Energy , vol.69 , Issue.September , pp. 365-374
    • Skittides, C.1    Früh, W.G.2
  • 45
    • 5444236478 scopus 로고
    • The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
    • [45] Huang, N.E., Liu, H.H., The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc A Math Phys Eng Sci, 454, 1971, 903.
    • (1971) Proc Roy Soc A Math Phys Eng Sci , vol.454 , pp. 903
    • Huang, N.E.1    Liu, H.H.2
  • 46
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • [46] Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:01 (2009), 1–41.
    • (2009) Adv Adapt Data Anal , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 47
    • 84893194518 scopus 로고    scopus 로고
    • On the computational complexity of the empirical mode decomposition algorithm
    • [47] Wang, Y.H., Yeh, C.H., Young, H.W.V., Hu, K., Lo, M.T., On the computational complexity of the empirical mode decomposition algorithm. Physica A 400:2 (2014), 159–167.
    • (2014) Physica A , vol.400 , Issue.2 , pp. 159-167
    • Wang, Y.H.1    Yeh, C.H.2    Young, H.W.V.3    Hu, K.4    Lo, M.T.5
  • 49
    • 84861851274 scopus 로고    scopus 로고
    • Bat algorithm for multiobjective optimization
    • [49] Yang, X.S., Bat algorithm for multiobjective optimization. Int J Bio-Inspired Comput 3:5 (2011), 267–274.
    • (2011) Int J Bio-Inspired Comput , vol.3 , Issue.5 , pp. 267-274
    • Yang, X.S.1
  • 50
    • 84952629849 scopus 로고    scopus 로고
    • Forecasting exchange rate using deep belief networks and conjugate gradient method
    • [50] Shen, F., Chao, J., Zhao, J., Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167 (2015), 243–253.
    • (2015) Neurocomputing , vol.167 , pp. 243-253
    • Shen, F.1    Chao, J.2    Zhao, J.3
  • 51
    • 0034309596 scopus 로고    scopus 로고
    • Evolutionary neural networks based on genetic algorithms
    • [51] Guo, X.T., Zhu, Y., Evolutionary neural networks based on genetic algorithms. J Tsinghua Univ (Sci Technol) 40:10 (2000), 116–119.
    • (2000) J Tsinghua Univ (Sci Technol) , vol.40 , Issue.10 , pp. 116-119
    • Guo, X.T.1    Zhu, Y.2
  • 52
    • 0026254768 scopus 로고
    • A general regression neural network
    • [52] Specht, D.F., A general regression neural network. IEEE Trans Neural Networks 2:6 (1991), 568–576.
    • (1991) IEEE Trans Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 53
    • 36148979000 scopus 로고    scopus 로고
    • Hand geometry identification without feature extraction by general regression neural network
    • [53] Polat, O., Yildirim, T., Hand geometry identification without feature extraction by general regression neural network. Expert Syst Appl 34 (2008), 845–849.
    • (2008) Expert Syst Appl , vol.34 , pp. 845-849
    • Polat, O.1    Yildirim, T.2
  • 54
    • 0023566098 scopus 로고    scopus 로고
    • Kolmogorov's mapping neural network existence theorem. In: IEEE joint conf on neural networks, New York, USA, vol. 3; 1987. p. 11–4.
    • [54] Hecht-Nielsen SR. Kolmogorov's mapping neural network existence theorem. In: IEEE joint conf on neural networks, New York, USA, vol. 3; 1987. p. 11–4.
    • Hecht-Nielsen, S.R.1
  • 55
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • [55] Diebold, F.X., Mariano, R., Comparing predictive accuracy. J Bus Econ Stat 13 (1995), 253–263.
    • (1995) J Bus Econ Stat , vol.13 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.2
  • 56
    • 2542547655 scopus 로고    scopus 로고
    • Research on superior combination forecasting model based on forecasting effective measure
    • [56] Chen, H.Y., Hou, D.P., Research on superior combination forecasting model based on forecasting effective measure. J Univ Sci Technol China, 2, 2002, 006.
    • (2002) J Univ Sci Technol China , vol.2 , pp. 006
    • Chen, H.Y.1    Hou, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.