메뉴 건너뛰기




Volumn 11, Issue 1, 1998, Pages 65-80

A sequential learning approach for single hidden layer neural networks

Author keywords

Neural network structures; Neural network training; Neural networks; Non linear system modelling

Indexed keywords

LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; OPTIMIZATION; REGRESSION ANALYSIS; VECTORS;

EID: 0031891445     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00111-1     Document Type: Article
Times cited : (102)

References (33)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19(6):1974;716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0345431979 scopus 로고
    • Cortical connections and parallel processing: Structure and function
    • In M. Arbib and Hamson (Eds.), Cambridge: MIT Press
    • Ballard, D.H. (1988). Cortical connections and parallel processing: Structure and function. In M. Arbib and Hamson (Eds.), Vision, brain and cooperative computation (pp. 563-621). Cambridge: MIT Press.
    • (1988) Vision, Brain and Cooperative Computation , pp. 563-621
    • Ballard, D.H.1
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamical modelling and control of chemical process systems
    • Bhat N.V., McAvoy T.J. Use of neural nets for dynamical modelling and control of chemical process systems. Computers and Chemical Engineering. 14:1990;573-583.
    • (1990) Computers and Chemical Engineering , vol.14 , pp. 573-583
    • Bhat, N.V.1    McAvoy, T.J.2
  • 4
    • 0022752513 scopus 로고
    • Correlation based model validation tests for non-linear models
    • Billings S.A., Voon W.S.F. Correlation based model validation tests for non-linear models. International Journal of Control. 44:1986;235-244.
    • (1986) International Journal of Control , vol.44 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2
  • 5
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • Bishop C. Improving the generalization properties of radial basis function neural networks. Neural Computation. 3(4):1991;579-588.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 579-588
    • Bishop, C.1
  • 8
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transaction on Neural Networks. 2(2):1991;302-309.
    • (1991) IEEE Transaction on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 9
    • 0030195189 scopus 로고    scopus 로고
    • Regularized orthogonal least squares algorithm for constructing radial basis function networks
    • Chen S., Chng E.S., Alkadhimi K. Regularized orthogonal least squares algorithm for constructing radial basis function networks. International Journal of Control. 64:1996;820-837.
    • (1996) International Journal of Control , vol.64 , pp. 820-837
    • Chen, S.1    Chng, E.S.2    Alkadhimi, K.3
  • 11
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematical Control Signal Systems. 2:1989;303-314.
    • (1989) Mathematical Control Signal Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • In D. Touretzky (Ed.), Morgan Kaufmann
    • Fahlman, S. and Lebiere, C. (1990). The cascade-correlation learning architecture. In D. Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 524-532). Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.1    Lebiere, C.2
  • 14
    • 0001594118 scopus 로고
    • Nonlinear multivariate calibration using principal components regression and artificial neural networks
    • Gemperline P.J., Long J.R., Gregoriou V.G. Nonlinear multivariate calibration using principal components regression and artificial neural networks. Analytical Chemistry. 63:1991;2313-2323.
    • (1991) Analytical Chemistry , vol.63 , pp. 2313-2323
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, V.G.3
  • 15
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • Girosi F., Poggio T. Networks and the best approximation property. Biological Cybernetics. 63:1990;169-179.
    • (1990) Biological Cybernetics , vol.63 , pp. 169-179
    • Girosi, F.1    Poggio, T.2
  • 16
    • 0025547167 scopus 로고
    • A neural network structure for system identification
    • San Diego, CA, USA, 23-25 May
    • Haesloop, D. and Holt, B.R. (1990). A neural network structure for system identification. In Proceedings of American Control Conference (pp. 2460-2465). San Diego, CA, USA, 23-25 May.
    • (1990) In Proceedings of American Control Conference , pp. 2460-2465
    • Haesloop, D.1    Holt, B.R.2
  • 17
    • 0027092168 scopus 로고
    • Radial basis function networks applied to process control
    • June) Chicago, USA
    • Hofland, A., Montague, G.A., and Morris, A.J. (1992, June). Radial basis function networks applied to process control. In Proceedings of the ACC (pp. 480-484), Chicago, USA.
    • (1992) In Proceedings of the ACC , pp. 480-484
    • Hofland, A.1    Montague, G.A.2    Morris, A.J.3
  • 18
    • 0026373082 scopus 로고
    • Local training for radial basis function networks: Towards solving the hidden units problem
    • Boston, MA, USA, 26-28 June
    • Holcomb, T. and Morari, M. (1991). Local training for radial basis function networks: towards solving the hidden units problem. In Proceedings of the ACC (pp. 2331-2336). Boston, MA, USA, 26-28 June.
    • (1991) In Proceedings of the ACC , pp. 2331-2336
    • Holcomb, T.1    Morari, M.2
  • 22
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics. 11:1963;431.
    • (1963) SIAM Journal of Applied Mathematics , vol.11 , pp. 431
    • Marquardt, D.1
  • 24
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K.S., Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks. 1(1):1990;4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 25
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • Orr M.J.L. Regularization in the selection of radial basis function centers. Neural Computation. 7(3):1995;606-623.
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.J.L.1
  • 26
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J., Sandberg I.W. Universal approximation using radial basis function networks. Neural Computing. 3:1991;246-257.
    • (1991) Neural Computing , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 27
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proceedings of the IEEE. 78:1990;1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 29
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J., Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks. 4:1991;67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 31
    • 84947626848 scopus 로고
    • Multilayer neural networks: Approximated canonical decomposition of nonlinearity
    • Wang Z., Tham M.T., Morris A.J. Multilayer neural networks: approximated canonical decomposition of nonlinearity. International Journal of Control. 56:1992;655-672.
    • (1992) International Journal of Control , vol.56 , pp. 655-672
    • Wang, Z.1    Tham, M.T.2    Morris, A.J.3
  • 32
    • 0028319326 scopus 로고
    • A procedure for determining the topology of feed forward neural networks
    • Wang Z., Di Massimo C., Montague G.A., Morris A.J. A procedure for determining the topology of feed forward neural networks. Neural Networks. 7(2):1994;291-300.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 291-300
    • Wang, Z.1    Di Massimo, C.2    Montague, G.A.3    Morris, A.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.