-
1
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to imbalanced datasets. In ECML, pages 39-50, 2004.
-
(2004)
ECML
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
5
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geissbuhler. Learning from imbalanced data in surveillance of nosocomial infection. Artificial Intelligence in Medicine, 37(1):7-18, 2006.
-
(2006)
Artificial Intelligence in Medicine
, vol.37
, Issue.1
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
8
-
-
57649123451
-
On the class imbalance problem
-
X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. On the class imbalance problem. In ICNC, pages 192-201, 2008.
-
(2008)
ICNC
, pp. 192-201
-
-
Guo, X.1
Yin, Y.2
Dong, C.3
Yang, G.4
Zhou, G.5
-
10
-
-
52649160312
-
Roughly balanced bagging for imbalanced data
-
S. Hido and H. Kashima. Roughly balanced bagging for imbalanced data. In SDM, pages 143-152, 2008.
-
(2008)
SDM
, pp. 143-152
-
-
Hido, S.1
Kashima, H.2
-
11
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano. Experimental perspectives on learning from imbalanced data. In ICML, pages 935-942, 2007.
-
(2007)
ICML
, pp. 935-942
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
12
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5):429-449, 2002.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
13
-
-
33750593995
-
EUS SVMs: Ensemble of under-sampled svms for data imbalance problems
-
P. Kang and S. Cho. EUS SVMs: Ensemble of under-sampled svms for data imbalance problems. In ICONIP, pages 837- 846, 2006.
-
(2006)
ICONIP
, pp. 837-846
-
-
Kang, P.1
Cho, S.2
-
14
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
-
(1997)
ICML
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
15
-
-
0042967740
-
A robust minimax approach to classification
-
G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax approach to classification. Journal of Machine Learning Research, 3:555-582, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 555-582
-
-
Lanckriet, G.R.1
Ghaoui, L.E.2
Bhattacharyya, C.3
Jordan, M.I.4
-
16
-
-
84857182086
-
A quadratic mean based supervised learning model for managing data skewness
-
W. Liu and S. Chawla. A quadratic mean based supervised learning model for managing data skewness. In SDM, 2011.
-
(2011)
SDM
-
-
Liu, W.1
Chawla, S.2
-
17
-
-
84878083672
-
Exploratory undersampling for class-imbalance learning
-
X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for class-imbalance learning. In ICDM, pages 965- 969, 2006.
-
(2006)
ICDM
, pp. 965-969
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
18
-
-
24944498883
-
Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
-
J. Reitsma, A. Glas, A. Rutjes, R. Scholten, P. Bossuyt, and A. Zwinderman. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology, 58(10):982-990, 2005.
-
(2005)
Journal of Clinical Epidemiology
, vol.58
, Issue.10
, pp. 982-990
-
-
Reitsma, J.1
Glas, A.2
Rutjes, A.3
Scholten, R.4
Bossuyt, P.5
Zwinderman, A.6
-
19
-
-
33746424489
-
Asymmetric bassing and random subspace for support vector machines-based relevance feedback in information retrieval
-
D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bassing and random subspace for support vector machines-based relevance feedback in information retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
Wu, X.4
-
20
-
-
65449163898
-
Asymmetric support vector machines: Low false-positive learning under the user tolerance
-
ACM
-
S. Wu, K. Lin, C. Chen, and M. Chen. Asymmetric support vector machines: Low false-positive learning under the user tolerance. In KDD, pages 749-757. ACM, 2008.
-
(2008)
KDD
, pp. 749-757
-
-
Wu, S.1
Lin, K.2
Chen, C.3
Chen, M.4
|