메뉴 건너뛰기




Volumn , Issue , 2011, Pages 754-763

Class imbalance, redux

Author keywords

Class imbalance; Classification

Indexed keywords

BOOTSTRAP TRAINING; CLASS IMBALANCE; DATA SETS; ENSEMBLE OF CLASSIFIERS; IMBALANCED DATA; PRACTICAL GUIDANCE; PRACTICAL IMPORTANCE; REAL DATA SETS; REAL-WORLD LEARNING; TRAINING DATA;

EID: 84857180411     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.33     Document Type: Conference Paper
Times cited : (191)

References (21)
  • 1
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to imbalanced datasets. In ECML, pages 39-50, 2004.
    • (2004) ECML , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 57649123451 scopus 로고    scopus 로고
    • On the class imbalance problem
    • X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. On the class imbalance problem. In ICNC, pages 192-201, 2008.
    • (2008) ICNC , pp. 192-201
    • Guo, X.1    Yin, Y.2    Dong, C.3    Yang, G.4    Zhou, G.5
  • 10
    • 52649160312 scopus 로고    scopus 로고
    • Roughly balanced bagging for imbalanced data
    • S. Hido and H. Kashima. Roughly balanced bagging for imbalanced data. In SDM, pages 143-152, 2008.
    • (2008) SDM , pp. 143-152
    • Hido, S.1    Kashima, H.2
  • 11
    • 34547995826 scopus 로고    scopus 로고
    • Experimental perspectives on learning from imbalanced data
    • J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano. Experimental perspectives on learning from imbalanced data. In ICML, pages 935-942, 2007.
    • (2007) ICML , pp. 935-942
    • Hulse, J.V.1    Khoshgoftaar, T.M.2    Napolitano, A.3
  • 12
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5):429-449, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 13
    • 33750593995 scopus 로고    scopus 로고
    • EUS SVMs: Ensemble of under-sampled svms for data imbalance problems
    • P. Kang and S. Cho. EUS SVMs: Ensemble of under-sampled svms for data imbalance problems. In ICONIP, pages 837- 846, 2006.
    • (2006) ICONIP , pp. 837-846
    • Kang, P.1    Cho, S.2
  • 14
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
    • (1997) ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 16
    • 84857182086 scopus 로고    scopus 로고
    • A quadratic mean based supervised learning model for managing data skewness
    • W. Liu and S. Chawla. A quadratic mean based supervised learning model for managing data skewness. In SDM, 2011.
    • (2011) SDM
    • Liu, W.1    Chawla, S.2
  • 17
    • 84878083672 scopus 로고    scopus 로고
    • Exploratory undersampling for class-imbalance learning
    • X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for class-imbalance learning. In ICDM, pages 965- 969, 2006.
    • (2006) ICDM , pp. 965-969
    • Liu, X.-Y.1    Wu, J.2    Zhou, Z.-H.3
  • 18
    • 24944498883 scopus 로고    scopus 로고
    • Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
    • J. Reitsma, A. Glas, A. Rutjes, R. Scholten, P. Bossuyt, and A. Zwinderman. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology, 58(10):982-990, 2005.
    • (2005) Journal of Clinical Epidemiology , vol.58 , Issue.10 , pp. 982-990
    • Reitsma, J.1    Glas, A.2    Rutjes, A.3    Scholten, R.4    Bossuyt, P.5    Zwinderman, A.6
  • 19
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bassing and random subspace for support vector machines-based relevance feedback in information retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bassing and random subspace for support vector machines-based relevance feedback in information retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 20
    • 65449163898 scopus 로고    scopus 로고
    • Asymmetric support vector machines: Low false-positive learning under the user tolerance
    • ACM
    • S. Wu, K. Lin, C. Chen, and M. Chen. Asymmetric support vector machines: Low false-positive learning under the user tolerance. In KDD, pages 749-757. ACM, 2008.
    • (2008) KDD , pp. 749-757
    • Wu, S.1    Lin, K.2    Chen, C.3    Chen, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.