메뉴 건너뛰기




Volumn 8, Issue 3, 2017, Pages

Leucine biosynthesis is involved in regulating high lipid accumulation in Yarrowia lipolytica

Author keywords

Biofuels; Biotechnology; Metabolic engineering; Systems biology; Yeast

Indexed keywords

2 ISOPROPYLMALATE SYNTHASE; CARBON; DIACYLGLYCEROL ACYLTRANSFERASE 1; LEUCINE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; NITROGEN; DIACYLGLYCEROL ACYLTRANSFERASE;

EID: 85021999704     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00857-17     Document Type: Article
Times cited : (40)

References (36)
  • 1
    • 84951737671 scopus 로고    scopus 로고
    • Yarrowia lipolytica as a biotechno-logical chassis to produce usual and unusual fatty acids
    • Ledesma-Amaro R, Nicaud JM. 2016. Yarrowia lipolytica as a biotechno-logical chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40-50. https://doi.org/10.1016/j.plipres.2015.12.001.
    • (2016) Prog Lipid Res , vol.61 , pp. 40-50
    • Ledesma-Amaro, R.1    Nicaud, J.M.2
  • 2
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai M, Stephanopoulos G. 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1-9. https://doi.org/10.1016/j.ymben.2012.08.007.
    • (2013) Metab Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 4
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS. 2014. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131. https://doi.org/10.1038/ncomms4131.
    • (2014) Nat Commun , vol.5 , pp. 3131
    • Blazeck, J.1    Hill, A.2    Liu, L.3    Knight, R.4    Miller, J.5    Pan, A.6    Otoupal, P.7    Alper, H.S.8
  • 5
    • 84938932084 scopus 로고    scopus 로고
    • Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant
    • Liu L, Markham K, Blazeck J, Zhou N, Leon D, Otoupal P, Alper HS. 2015. Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31:102-111. https://doi.org/10.1016/j.ymben.2015.07.004.
    • (2015) Metab Eng , vol.31 , pp. 102-111
    • Liu, L.1    Markham, K.2    Blazeck, J.3    Zhou, N.4    Leon, D.5    Otoupal, P.6    Alper, H.S.7
  • 7
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2011. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6:e27966. https://doi.org/10.1371/journal.pone.0027966.
    • (2011) PLoS One , vol.6 , pp. 7966
    • Morin, N.1    Cescut, J.2    Beopoulos, A.3    Lelandais, G.4    Le Berre, V.5    Uribelarrea, J.L.6    Molina-Jouve, C.7    Nicaud, J.M.8
  • 8
    • 84888233890 scopus 로고    scopus 로고
    • Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica
    • Seip J, Jackson R, He H, Zhu Q, Hong SP. 2013. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79: 7360-7370. https://doi.org/10.1128/AEM.02079-13.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 7360-7370
    • Seip, J.1    Jackson, R.2    He, H.3    Zhu, Q.4    Hong, S.P.5
  • 9
    • 84873450128 scopus 로고    scopus 로고
    • Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
    • Wang ZP, Xu HM, Wang GY, Chi Z-M, Chi ZM. 2013. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta 1831:675-682. https://doi.org/10.1016/j.bbalip.2012.12.010.
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 675-682
    • Wang, Z.P.1    Xu, H.M.2    Wang, G.Y.3    Chi, Z.-M.4    Chi, Z.M.5
  • 10
    • 84857917010 scopus 로고    scopus 로고
    • Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA: Diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts
    • Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM. 2012. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 93:1523-1537. https://doi.org/10.1007/s00253-011-3506-x.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 1523-1537
    • Beopoulos, A.1    Haddouche, R.2    Kabran, P.3    Dulermo, T.4    Chardot, T.5    Nicaud, J.M.6
  • 11
    • 84991244043 scopus 로고    scopus 로고
    • Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
    • Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. 2016. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. npj Syst Biol Appl 2:16005. https://doi.org/10.1038/npjsba.2016.5.
    • (2016) npj Syst Biol Appl , vol.2 , pp. 16005
    • Kerkhoven, E.J.1    Pomraning, K.R.2    Baker, S.E.3    Nielsen, J.4
  • 12
    • 58549084410 scopus 로고    scopus 로고
    • How saccharomyces responds to nutrients
    • Zaman S, Lippman SI, Zhao X, Broach JR. 2008. How saccharomyces responds to nutrients. Annu Rev Genet 42:27-81. https://doi.org/10.1146/annurev.genet.41.110306.130206.
    • (2008) Annu Rev Genet , vol.42 , pp. 27-81
    • Zaman, S.1    Lippman, S.I.2    Zhao, X.3    Broach, J.R.4
  • 13
    • 84959444185 scopus 로고    scopus 로고
    • A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy
    • Bernard A, Jin M, Xu Z, Klionsky DJ. 2015. A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 11:2114-2122. https://doi.org/10.1080/15548627.2015.1099796.
    • (2015) Autophagy , vol.11 , pp. 2114-2122
    • Bernard, A.1    Jin, M.2    Xu, Z.3    Klionsky, D.J.4
  • 14
    • 0034973590 scopus 로고    scopus 로고
    • Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
    • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347-4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 4347-4368
    • Natarajan, K.1    Meyer, M.R.2    Jackson, B.M.3    Slade, D.4    Roberts, C.5    Hinnebusch, A.G.6    Marton, M.J.7
  • 15
    • 79958090979 scopus 로고    scopus 로고
    • DREME: Motif discovery in transcription factor ChIP-seq data
    • Bailey TL. 2011. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653-1659. https://doi.org/10.1093/bioinformatics/btr261.
    • (2011) Bioinformatics , vol.27 , pp. 1653-1659
    • Bailey, T.L.1
  • 16
    • 33646264529 scopus 로고    scopus 로고
    • Advances in proteomics data analysis and display using an accurate mass and time tag approach
    • Zimmer JSD, Monroe ME, Qian WJ, Smith RD. 2006. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 25:450-482. https://doi.org/10.1002/mas.20071.
    • (2006) Mass Spectrom Rev , vol.25 , pp. 450-482
    • Zimmer, J.S.D.1    Monroe, M.E.2    Qian, W.J.3    Smith, R.D.4
  • 17
    • 84964321113 scopus 로고    scopus 로고
    • On the dependency of cellular protein levels on mRNA abundance
    • Liu Y, Beyer A, Aebersold R. 2016. On the dependency of cellular protein levels on mRNA abundance. Cell 165:535-550. https://doi.org/10.1016/j.cell.2016.03.014.
    • (2016) Cell , vol.165 , pp. 535-550
    • Liu, Y.1    Beyer, A.2    Aebersold, R.3
  • 18
    • 78049304837 scopus 로고    scopus 로고
    • Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes
    • Bordel S, Agren R, Nielsen J. 2010. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859. https://doi.org/10.1371/journal.pcbi.1000859.
    • (2010) PLoS Comput Biol , vol.6 , pp. 859
    • Bordel, S.1    Agren, R.2    Nielsen, J.3
  • 19
    • 84929378123 scopus 로고    scopus 로고
    • Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis
    • Pomraning KR, Wei S, Karagiosis SA, Kim YM, Dohnalkova AC, Arey BW, Bredeweg EL, Orr G, Metz TO, Baker SE. 2015. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One 10:e0123188. https://doi.org/10.1371/journal.pone.0123188.
    • (2015) PLoS One , vol.10 , pp. 3188
    • Pomraning, K.R.1    Wei, S.2    Karagiosis, S.A.3    Kim, Y.M.4    Dohnalkova, A.C.5    Arey, B.W.6    Bredeweg, E.L.7    Orr, G.8    Metz, T.O.9    Baker, S.E.10
  • 20
    • 84953217261 scopus 로고    scopus 로고
    • Branched-chain aminotransferases control TORC1 signaling in Saccharomyces cerevisiae
    • Kingsbury JM, Sen ND, Cardenas ME. 2015. Branched-chain aminotransferases control TORC1 signaling in Saccharomyces cerevisiae. PLoS Genet 11:e1005714. https://doi.org/10.1371/journal.pgen.1005714.
    • (2015) PLoS Genet , vol.11 , pp. 5714
    • Kingsbury, J.M.1    Sen, N.D.2    Cardenas, M.E.3
  • 22
    • 70349410320 scopus 로고    scopus 로고
    • Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene
    • Baerends RJS, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. 2009. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75:6055-6061. https://doi.org/10.1128/AEM.00989-09.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 6055-6061
    • Baerends, R.J.S.1    Qiu, J.L.2    Rasmussen, S.3    Nielsen, H.B.4    Brandt, A.5
  • 23
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501-517. https://doi.org/10.1002/yea.320080703.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 24
    • 84878268867 scopus 로고    scopus 로고
    • Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD
    • Khoomrung S, Chumnanpuen P, Jansa-Ard S, Ståhlman M, Nookaew I, Borén J, Nielsen J. 2013. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal Chem 85:4912-4919. https://doi.org/10.1021/ac3032405.
    • (2013) Anal Chem , vol.85 , pp. 4912-4919
    • Khoomrung, S.1    Chumnanpuen, P.2    Jansa-Ard, S.3    Ståhlman, M.4    Nookaew, I.5    Borén, J.6    Nielsen, J.7
  • 25
    • 84867296561 scopus 로고    scopus 로고
    • Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae
    • Khoomrung S, Chumnanpuen P, Jansaard S, Nookaew I, Nielsen J. 2012. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl Micro-biol Biotechnol 94:1637-1646. https://doi.org/10.1007/s00253-012-4125-x.
    • (2012) Appl Micro-biol Biotechnol , vol.94 , pp. 1637-1646
    • Khoomrung, S.1    Chumnanpuen, P.2    Jansaard, S.3    Nookaew, I.4    Nielsen, J.5
  • 26
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25.
    • (2009) Genome Biol , vol.10 , pp. 25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 27
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. 2015. HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169. https://doi.org/10.1093/bioinformatics/btu638.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 28
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. https://doi.org/10.1186/gb-2010-11-3-r25.
    • (2010) Genome Biol , vol.11 , pp. 25
    • Robinson, M.D.1    Oshlack, A.2
  • 29
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15: R29. https://doi.org/10.1186/gb-2014-15-2-r29.
    • (2014) Genome Biol , vol.15 , pp. 29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 30
    • 84877309040 scopus 로고    scopus 로고
    • Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
    • Väremo L, Nielsen J, Nookaew I. 2013. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41:4378-4391. https://doi.org/10.1093/nar/gkt111.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4378-4391
    • Väremo, L.1    Nielsen, J.2    Nookaew, I.3
  • 33
    • 82955187002 scopus 로고    scopus 로고
    • A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors
    • Webb-Robertson BJ, Matzke MM, Jacobs JM, Pounds JG, Waters KM. 2011. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Proteomics 11:4736-4741. https://doi.org/10.1002/pmic.201100078.
    • (2011) Proteomics , vol.11 , pp. 4736-4741
    • Webb-Robertson, B.J.1    Matzke, M.M.2    Jacobs, J.M.3    Pounds, J.G.4    Waters, K.M.5
  • 35
    • 72449186517 scopus 로고    scopus 로고
    • FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry
    • Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. 2009. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038-10048. https://doi.org/10.1021/ac9019522.
    • (2009) Anal Chem , vol.81 , pp. 10038-10048
    • Kind, T.1    Wohlgemuth, G.2    Lee, D.Y.3    Lu, Y.4    Palazoglu, M.5    Shahbaz, S.6    Fiehn, O.7
  • 36
    • 66149088821 scopus 로고    scopus 로고
    • MetaboliteDetector: Comprehensive analysis tool for targeted and non-targeted GC/MS based metabolome analysis
    • Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D. 2009. MetaboliteDetector: comprehensive analysis tool for targeted and non-targeted GC/MS based metabolome analysis. Anal Chem 81:3429-3439. https://doi.org/10.1021/ac802689c.
    • (2009) Anal Chem , vol.81 , pp. 3429-3439
    • Hiller, K.1    Hangebrauk, J.2    Jäger, C.3    Spura, J.4    Schreiber, K.5    Schomburg, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.