메뉴 건너뛰기




Volumn 55, Issue 9, 2017, Pages 5185-5197

Dimensionality Reduction by Spatial-Spectral Preservation in Selected Bands

Author keywords

Band selection; determinantal point process (DPP); dimensionality reduction (DR); multiple Laplacian eigenmaps (MLEs)

Indexed keywords

LAPLACE TRANSFORMS; SPECTROSCOPY;

EID: 85021807370     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2703598     Document Type: Article
Times cited : (75)

References (60)
  • 1
    • 85027925065 scopus 로고    scopus 로고
    • Band selection using improved sparse subspace clustering for hyperspectral imagery classification
    • Jun.
    • W. Sun, L. Zhang, B. Du, W. Li, and Y. M. Lai, "Band selection using improved sparse subspace clustering for hyperspectral imagery classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2784-2797, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2784-2797
    • Sun, W.1    Zhang, L.2    Du, B.3    Li, W.4    Lai, Y.M.5
  • 2
    • 84906948361 scopus 로고    scopus 로고
    • Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery
    • Feb.
    • W. Li, Q. Du, F. Zhang, and W. Hu, "Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 389-393, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 389-393
    • Li, W.1    Du, Q.2    Zhang, F.3    Hu, W.4
  • 3
    • 84922829753 scopus 로고    scopus 로고
    • Hyperspectral anomaly change detection with slow feature analysis
    • Mar.
    • C. Wu, L. Zhang, and B. Du, "Hyperspectral anomaly change detection with slow feature analysis," Neurocomputing, vol. 151, pp. 175-187, Mar. 2015.
    • (2015) Neurocomputing , vol.151 , pp. 175-187
    • Wu, C.1    Zhang, L.2    Du, B.3
  • 4
    • 85027928326 scopus 로고    scopus 로고
    • Substance dependence constrained sparse NMF for hyperspectral unmixing
    • Jun.
    • Y. Yuan, M. Fu, and X. Lu, "Substance dependence constrained sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 2975-2986, Jun. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 2975-2986
    • Yuan, Y.1    Fu, M.2    Lu, X.3
  • 5
    • 84899897610 scopus 로고    scopus 로고
    • Dimensionality reduction using graphembedded probability-based semi-supervised discriminant analysis
    • Aug.
    • W. Li, Q. Ruan, and J. Wan, "Dimensionality reduction using graphembedded probability-based semi-supervised discriminant analysis," Neurocomputing, vol. 138, pp. 283-296, Aug. 2014.
    • (2014) Neurocomputing , vol.138 , pp. 283-296
    • Li, W.1    Ruan, Q.2    Wan, J.3
  • 6
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning machine for hyperspectral imagery classification
    • Jul.
    • W. Li, C. Chen, H. Su, and Q. Du, "Local binary patterns and extreme learning machine for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3681-3693, Jul. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 7
    • 84906948715 scopus 로고    scopus 로고
    • A new sparsity-based band selection method for target detection of hyperspectral image
    • Feb.
    • K. Sun, X. Geng, and L. Ji, "A new sparsity-based band selection method for target detection of hyperspectral image," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 329-333, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 329-333
    • Sun, K.1    Geng, X.2    Ji, L.3
  • 9
    • 84858078312 scopus 로고    scopus 로고
    • Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles
    • May
    • G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, "Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 447-451, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 447-451
    • Licciardi, G.1    Marpu, P.R.2    Chanussot, J.3    Benediktsson, J.A.4
  • 10
    • 84942613317 scopus 로고    scopus 로고
    • Hyperspectral image processing using locally linear embedding
    • Mar.
    • D. H. Kim and L. H. Finkel, "Hyperspectral image processing using locally linear embedding," in Proc. 1st Int. IEEE EMBS Conf. Neural Eng., Mar. 2003, pp. 316-319.
    • (2003) Proc. 1st Int. IEEE EMBS Conf. Neural Eng. , pp. 316-319
    • Kim, D.H.1    Finkel, L.H.2
  • 11
    • 14644422171 scopus 로고    scopus 로고
    • Exploiting manifold geometry in hyperspectral imagery
    • Mar.
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Exploiting manifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 441-454
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 12
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 13
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 585-591.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 14
    • 84906254465 scopus 로고    scopus 로고
    • Schroedinger eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery
    • Jun.
    • N. D. Cahill, W. Czaja, and D. W. Messinger, "Schroedinger eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery," Proc. SPIE, vol. 9088, art. no. 908804, Jun. 2014.
    • (2014) Proc. SPIE , vol.9088
    • Cahill, N.D.1    Czaja, W.2    Messinger, D.W.3
  • 15
    • 33846570487 scopus 로고    scopus 로고
    • A novel geometry-based featureselection technique for hyperspectral imagery
    • Jan.
    • L. Wang, X. Jia, and Y. Zhang, "A novel geometry-based featureselection technique for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 4, no. 1, pp. 171-175, Jan. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.4 , Issue.1 , pp. 171-175
    • Wang, L.1    Jia, X.2    Zhang, Y.3
  • 16
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar.
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 17
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 19
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • Dec.
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, "Dimensionality reduction based on clonal selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 20
    • 84906784859 scopus 로고    scopus 로고
    • Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
    • Jan.
    • Q. Zhang, Y. Tian, Y. Yang, and C. Pan, "Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 261-279, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 261-279
    • Zhang, Q.1    Tian, Y.2    Yang, Y.3    Pan, C.4
  • 21
    • 84902104255 scopus 로고    scopus 로고
    • A fast volume-gradient-based band selection method for hyperspectral image
    • Nov.
    • X. Geng, K. Sun, L. Ji, and Y. Zhao, "A fast volume-gradient-based band selection method for hyperspectral image," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7111-7119, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7111-7119
    • Geng, X.1    Sun, K.2    Ji, L.3    Zhao, Y.4
  • 22
    • 84891739734 scopus 로고    scopus 로고
    • Hyperspectral image classification using band selection and morphological profile
    • Jan.
    • K. Tan, E. Li, Q. Du, and P. Du, "Hyperspectral image classification using band selection and morphological profile," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 40-48, Jan. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.1 , pp. 40-48
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 23
    • 84880258880 scopus 로고    scopus 로고
    • A novel method for hyperspectral image classification based on laplacian eigenmap pixels distributionflow
    • Jun.
    • B. Hou, X. Zhang, Q. Ye, and Y. Zheng, "A novel method for hyperspectral image classification based on laplacian eigenmap pixels distributionflow," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1602-1618, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1602-1618
    • Hou, B.1    Zhang, X.2    Ye, Q.3    Zheng, Y.4
  • 24
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 25
    • 84907495101 scopus 로고    scopus 로고
    • Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features
    • Mar.
    • W. Liao, A. Pizurica, R. Bellens, S. Gautama, and W. Philips, "Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3, pp. 552-556, Mar. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.3 , pp. 552-556
    • Liao, W.1    Pizurica, A.2    Bellens, R.3    Gautama, S.4    Philips, W.5
  • 26
    • 84905924444 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest
    • Jun.
    • C. Debes et al., "Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2405-2418, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2405-2418
    • Debes, C.1
  • 28
    • 84907351970 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Comput. Inf. Sci., Univ. Pennsylvania, Philadelphia, PA, USA
    • A. Kulesza, "Learning with determinantal point processes," Ph.D. dissertation, Dept. Comput. Inf. Sci., Univ. Pennsylvania, Philadelphia, PA, USA, 2012.
    • (2012) Learning with Determinantal Point Processes
    • Kulesza, A.1
  • 31
    • 84874080932 scopus 로고    scopus 로고
    • Determinantal point processes for machine learning
    • A. Kulesza and B. Taskar, "Determinantal point processes for machine learning," Found. Trends Mach. Learn., vol. 5, nos. 2-3, pp. 123-286, 2012.
    • (2012) Found. Trends Mach. Learn. , vol.5 , Issue.2-3 , pp. 123-286
    • Kulesza, A.1    Taskar, B.2
  • 33
    • 39049111776 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral imagery using improved locally linear embedding
    • G. Chen and S.-E. Qian, "Dimensionality reduction of hyperspectral imagery using improved locally linear embedding," J. Appl. Remote Sens., vol. 1, no. 1, p. 013509, 2007.
    • (2007) J. Appl. Remote Sens. , vol.1 , Issue.1 , pp. 013509
    • Chen, G.1    Qian, S.-E.2
  • 34
    • 85027944532 scopus 로고    scopus 로고
    • Hyperspectral image classification with multidimensional attribute profiles
    • Oct.
    • E. Aptoula, "Hyperspectral image classification with multidimensional attribute profiles," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp. 2031-2035, Oct. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.10 , pp. 2031-2035
    • Aptoula, E.1
  • 35
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct.
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 36
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 37
    • 85029663607 scopus 로고    scopus 로고
    • GPU-based parallel kernel PCA feature extraction for hyperspectral images
    • R. Luo and Y. Pi, "GPU-based parallel kernel PCA feature extraction for hyperspectral images," in Proc. Int. Conf. Remote Sens. Wireless Commun. (RSWC), 2014, pp. 140-145.
    • (2014) Proc. Int. Conf. Remote Sens. Wireless Commun. (RSWC) , pp. 140-145
    • Luo, R.1    Pi, Y.2
  • 38
    • 84861383934 scopus 로고    scopus 로고
    • Reducing dimensionality of hyperspectral data with diffusion maps and clustering with k-means and fuzzy art
    • L. D. Plessis, R. Xu, S. Damelin, M. Sears, and D. C. Wunsch, "Reducing dimensionality of hyperspectral data with diffusion maps and clustering with k-means and fuzzy art," Int. J. Syst., Control Commun., vol. 3, no. 3, pp. 232-251, 2011.
    • (2011) Int. J. Syst., Control Commun. , vol.3 , Issue.3 , pp. 232-251
    • Plessis, L.D.1    Xu, R.2    Damelin, S.3    Sears, M.4    Wunsch, D.C.5
  • 39
    • 84855417591 scopus 로고    scopus 로고
    • Laplacian eigenmapsbased polarimetric dimensionality reduction for SAR image classification
    • Jan.
    • S. T. Tu, J. Y. Chen, W. Yang, and H. Sun, "Laplacian eigenmapsbased polarimetric dimensionality reduction for SAR image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 1, pp. 170-179, Jan. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.1 , pp. 170-179
    • Tu, S.T.1    Chen, J.Y.2    Yang, W.3    Sun, H.4
  • 40
    • 79151480230 scopus 로고    scopus 로고
    • Unsupervised feature selection using weighted principal components
    • May
    • S. B. Kim and P. Rattakorn, "Unsupervised feature selection using weighted principal components," Expert Syst. Appl., vol. 38, no. 5, pp. 5704-5710, May 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5704-5710
    • Kim, S.B.1    Rattakorn, P.2
  • 41
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 42
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 43
    • 84866291195 scopus 로고    scopus 로고
    • Discriminative Gabor feature selection for hyperspectral image classification
    • Jan.
    • L. Shen, Z. Zhu, S. Jia, J. Zhu, and Y. Sun, "Discriminative Gabor feature selection for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 29-33, Jan. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.1 , pp. 29-33
    • Shen, L.1    Zhu, Z.2    Jia, S.3    Zhu, J.4    Sun, Y.5
  • 44
    • 2442551129 scopus 로고    scopus 로고
    • Visual method for spectral band selection
    • Apr.
    • A. Ifarraguerri and M. W. Prairie, "Visual method for spectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 1, no. 2, pp. 101-106, Apr. 2004.
    • (2004) IEEE Geosci. Remote Sens. Lett. , vol.1 , Issue.2 , pp. 101-106
    • Ifarraguerri, A.1    Prairie, M.W.2
  • 45
    • 18844367208 scopus 로고    scopus 로고
    • Band selection based on feature weighting for classification of hyperspectral data
    • Apr.
    • R. Huang and M. He, "Band selection based on feature weighting for classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 156-159, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 156-159
    • Huang, R.1    He, M.2
  • 46
    • 84906951013 scopus 로고    scopus 로고
    • Feature selection based on hybridization of genetic algorithm and particle swarm optimization
    • Feb.
    • P. Ghamisi and J. A. Benediktsson, "Feature selection based on hybridization of genetic algorithm and particle swarm optimization," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 309-313, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 309-313
    • Ghamisi, P.1    Benediktsson, J.A.2
  • 47
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 48
    • 33947576864 scopus 로고    scopus 로고
    • Band selection in multispectral images by minimization of dependent information
    • Mar.
    • J. M. Sotoca, F. Pla, and J. S. Sánchez, "Band selection in multispectral images by minimization of dependent information," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 2, pp. 258-267, Mar. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.37 , Issue.2 , pp. 258-267
    • Sotoca, J.M.1    Pla, F.2    Sánchez, J.S.3
  • 49
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Nov.
    • C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 50
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection
    • Feb.
    • K. Z. Mao, "Orthogonal forward selection and backward elimination algorithms for feature subset selection," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 629-634, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 629-634
    • Mao, K.Z.1
  • 51
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Feb.
    • Y. Yuan, G. Zhu, and Q. Wang, "Hyperspectral band selection by multitask sparsity pursuit," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 631-644, Feb. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.2 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 52
    • 84905912652 scopus 로고    scopus 로고
    • Optimized hyperspectral band selection using particle swarm optimization
    • Jun.
    • H. Su, Q. Du, G. Chen, and P. Du, "Optimized hyperspectral band selection using particle swarm optimization," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2659-2670, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2659-2670
    • Su, H.1    Du, Q.2    Chen, G.3    Du, P.4
  • 54
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 56
    • 84869498000 scopus 로고    scopus 로고
    • Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data
    • Mar.
    • P. R. Marpu, M. Pedergnana, M. D. Mura, J. A. Benediktsson, and L. Bruzzone, "Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 293-297, Mar. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.2 , pp. 293-297
    • Marpu, P.R.1    Pedergnana, M.2    Mura, M.D.3    Benediktsson, J.A.4    Bruzzone, L.5
  • 57
    • 84907456238 scopus 로고    scopus 로고
    • Multiple feature learning for hyperspectral image classification
    • Mar.
    • J. Li et al., "Multiple feature learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592-1606, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1592-1606
    • Li, J.1
  • 58
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 59
    • 85011976703 scopus 로고    scopus 로고
    • Discovering diverse subset for unsupervised hyperspectral band selection
    • Jan.
    • Y. Yuan, X. Zheng, and X. Lu, "Discovering diverse subset for unsupervised hyperspectral band selection," IEEE Trans. Image Process., vol. 26, no. 1, pp. 51-64, Jan. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.1 , pp. 51-64
    • Yuan, Y.1    Zheng, X.2    Lu, X.3
  • 60
    • 84872950801 scopus 로고    scopus 로고
    • A graph-based classification method for hyperspectral images
    • Feb.
    • J. Bai, S. Xiang, and C. Pan, "A graph-based classification method for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 803-817, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 803-817
    • Bai, J.1    Xiang, S.2    Pan, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.