메뉴 건너뛰기




Volumn 34, Issue 1, 2004, Pages 629-634

Orthogonal Forward Selection and Backward Elimination Algorithms for Feature Subset Selection

Author keywords

Feature subset selection; Orthogonal backward elimination (OBE); Orthogonal forward selection (OFS)

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); ERROR ANALYSIS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MAPPING; MATHEMATICAL TRANSFORMATIONS; PATTERN MATCHING; PRINCIPAL COMPONENT ANALYSIS; PROBLEM SOLVING; REDUNDANCY; SET THEORY; VECTORS;

EID: 0742307292     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2002.804363     Document Type: Article
Times cited : (202)

References (16)
  • 1
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 2
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Sept.
    • P. M. Narendra and K. Fukunaga, "A branch and bound algorithm for feature subset selection," IEEE Trans. Comput., vol. C-26, pp. 917-922, Sept. 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 3
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • W. Siedlecki and J. Skansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Skansky, J.2
  • 4
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Feb.
    • J. Yang and V. Honavar, "Feature subset selection using a genetic algorithm," IEEE Intell. Syst., vol. 13, pp. 44-49, Feb. 1998.
    • (1998) IEEE Intell. Syst. , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 6
    • 0004428795 scopus 로고
    • On the max-min approach for feature ordering and selection
    • Liege, Belgium: Liege Univ.
    • E. Backer and J. A. D. Schipper, "On the max-min approach for feature ordering and selection," in The Seminar on Pattern Recognition. Liege, Belgium: Liege Univ., 1977.
    • (1977) The Seminar on Pattern Recognition
    • Backer, E.1    Schipper, J.A.D.2
  • 7
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovicova, and J. Kittler, "Floating search methods in feature selection," Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Recognit. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 8
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application and small sample performance
    • Feb.
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application and small sample performance," IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Machine Intell. , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 9
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their applications to nonlinear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to nonlinear system identification," Int. J. Control, vol. 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 12
    • 0031283432 scopus 로고    scopus 로고
    • Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    • Dec.
    • E. Wilburn, J. O. G. Reddick, E. N. Cook, T. D. Elkin, and R. J. Deaton, "Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks," IEEE Trans. Med. Imag., vol. 16, pp. 911-918, Dec. 1997.
    • (1997) IEEE Trans. Med. Imag. , vol.16 , pp. 911-918
    • Wilburn, E.1    Reddick, J.O.G.2    Cook, E.N.3    Elkin, T.D.4    Deaton, R.J.5
  • 13
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and supervised feature reduction via projection pursuit
    • June
    • L. O. Jimenez and D. A. Landgrebe, "Hyperspectral data analysis and supervised feature reduction via projection pursuit," IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 2653-2667, June 1999.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , pp. 2653-2667
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 14
    • 0031352151 scopus 로고    scopus 로고
    • A comparative study of remotely sensed data classification using principal component analysis and divergence
    • C.-C. Hung, A. Fahsi, W. Tadesse, and T. L. Coleman, "A comparative study of remotely sensed data classification using principal component analysis and divergence," in Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 3, 1997, pp. 2444-2449.
    • (1997) Proc. IEEE Int. Conf. Syst. Man Cybern. , vol.3 , pp. 2444-2449
    • Hung, C.-C.1    Fahsi, A.2    Tadesse, W.3    Coleman, T.L.4
  • 15
    • 0742282934 scopus 로고    scopus 로고
    • [Online]
    • USGS Spectral Lab [Online]. Available: ftp://speclab.cr.usgs.gov
  • 16
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Univ. of California, Irvine, CA. [Online]
    • C. L. Blake and C. J. Merz. (1998) UCI repository of machine learning databases. Tech. Rep., Dept. Inform. Comput. Sci., Univ. of California, Irvine, CA. [Online]. Available: http://www.ics.uci.edu/mlearn/Machine-Learning.html
    • (1998) Tech. Rep., Dept. Inform. Comput. Sci.
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.