메뉴 건너뛰기




Volumn 2, Issue 1, 2017, Pages

Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

Author keywords

Biotechnology; Carbon catabolite repression; Carbon metabolism; GATA; GATA transcription factor; Gene regulation; Lipid metabolism; Lipid synthesis; Metabolic regulation; Nitrogen; Nitrogen catabolite repression; Nitrogen metabolism; Oleaginous yeast; Transcription factor; Yarrowia lipolytica; Yeasts; Zinc finger

Indexed keywords


EID: 85021753019     PISSN: None     EISSN: 23795042     Source Type: Journal    
DOI: 10.1128/mSphere.00038-17     Document Type: Article
Times cited : (33)

References (76)
  • 1
    • 84946782577 scopus 로고    scopus 로고
    • Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi
    • Calvey CH, Su YK, Willis LB, McGee M, Jeffries TW. 2016. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol 200:780-788. https://doi.org/10.1016/j.biortech.2015.10.104
    • (2016) Bioresour Technol , vol.200 , pp. 780-788
    • Calvey, C.H.1    Su, Y.K.2    Willis, L.B.3    McGee, M.4    Jeffries, T.W.5
  • 2
    • 0034775578 scopus 로고    scopus 로고
    • Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina
    • Wynn JP, Hamid AA, Li Y, Ratledge C. 2001. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147: 2857-2864. https://doi.org/10.1099/00221287-147-10-2857
    • (2001) Microbiology , vol.147 , pp. 2857-2864
    • Wynn, J.P.1    Hamid, A.A.2    Li, Y.3    Ratledge, C.4
  • 3
    • 84957628656 scopus 로고    scopus 로고
    • Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level
    • Tang X, Zan X, Zhao L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C. 2016. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Fact 15:35. https://doi.org/10.1186/ s12934-016-0428-4
    • (2016) Microb Cell Fact , vol.15 , pp. 35
    • Tang, X.1    Zan, X.2    Zhao, L.3    Chen, H.4    Chen, Y.Q.5    Chen, W.6    Song, Y.7    Ratledge, C.8
  • 4
    • 84959544035 scopus 로고    scopus 로고
    • Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation
    • Kolouchová I, Matátková O, Sigler K, Masák J, Rezanka T. 2016. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol (Praha) 61:431-438. https://doi.org/10.1007/s12223-016-0454-y
    • (2016) Folia Microbiol (Praha) , vol.61 , pp. 431-438
    • Kolouchová, I.1    Matátková, O.2    Sigler, K.3    Masák, J.4    Rezanka, T.5
  • 5
    • 77951093389 scopus 로고    scopus 로고
    • Phosphate-limitation mediated lipid production by Rhodosporidium toruloides
    • Wu S, Hu C, Jin G, Zhao X, Zhao ZK. 2010. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101: 6124-6129. https://doi.org/10.1016/j.biortech.2010.02.111
    • (2010) Bioresour Technol , vol.101 , pp. 6124-6129
    • Wu, S.1    Hu, C.2    Jin, G.3    Zhao, X.4    Zhao, Z.K.5
  • 6
    • 78650711252 scopus 로고    scopus 로고
    • Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions
    • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. 2011. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803-1807. https://doi.org/10.1016/j.biortech.2010.09.033
    • (2011) Bioresour Technol , vol.102 , pp. 1803-1807
    • Wu, S.1    Zhao, X.2    Shen, H.3    Wang, Q.4    Zhao, Z.K.5
  • 7
    • 0025310930 scopus 로고
    • Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios
    • Park WS, Murphy PA, Glatz BA. 1990. Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36:318-326. https://doi.org/ 10.1139/m90-056
    • (1990) Can J Microbiol , vol.36 , pp. 318-326
    • Park, W.S.1    Murphy, P.A.2    Glatz, B.A.3
  • 8
    • 84982863805 scopus 로고    scopus 로고
    • High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium
    • Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G. 2016. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116-126. https://doi.org/ 10.1016/j.jbiotec.2016.08.001
    • (2016) J Biotechnol , vol.234 , pp. 116-126
    • Bellou, S.1    Triantaphyllidou, I.E.2    Mizerakis, P.3    Aggelis, G.4
  • 9
    • 84991244043 scopus 로고    scopus 로고
    • Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
    • 3 March
    • Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. 3 March 2016. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst Biol Appl https://doi.org/10.1038/npjsba.2016.5
    • (2016) NPJ Syst Biol Appl
    • Kerkhoven, E.J.1    Pomraning, K.R.2    Baker, S.E.3    Nielsen, J.4
  • 10
    • 0036865034 scopus 로고    scopus 로고
    • Regulation of lipid accumulation in oleaginous microorganisms
    • Ratledge C. 2002. Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30:1047-1050
    • (2002) Biochem Soc Trans , vol.30 , pp. 1047-1050
    • Ratledge, C.1
  • 11
    • 84900478190 scopus 로고    scopus 로고
    • Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions
    • Sestric R, Munch G, Cicek N, Sparling R, Levin DB. 2014. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresour Technol 164:41-46. https://doi.org/10.1016/j.biortech.2014.04.016
    • (2014) Bioresour Technol , vol.164 , pp. 41-46
    • Sestric, R.1    Munch, G.2    Cicek, N.3    Sparling, R.4    Levin, D.B.5
  • 12
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2011. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6:e27966. https://doi.org/ 10.1371/journal.pone.0027966
    • (2011) PLoS One , vol.6
    • Morin, N.1    Cescut, J.2    Beopoulos, A.3    Lelandais, G.4    Le Berre, V.5    Uribelarrea, J.L.6    Molina-Jouve, C.7    Nicaud, J.M.8
  • 13
    • 0021229450 scopus 로고
    • Effect of nitrogen source on lipid accumulation in oleaginous yeasts
    • Evans CT, Ratledge C. 1984. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J Gen Microbiol 130:1693-1704. https:// doi.org/10.1099/00221287-130-7-1693
    • (1984) J Gen Microbiol , vol.130 , pp. 1693-1704
    • Evans, C.T.1    Ratledge, C.2
  • 15
    • 0036024577 scopus 로고    scopus 로고
    • Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots
    • Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223-238. https://doi.org/10.1111/ j.1574-6976.2002.tb00612.x
    • (2002) FEMS Microbiol Rev , vol.26 , pp. 223-238
    • Cooper, T.G.1
  • 16
    • 0033955802 scopus 로고    scopus 로고
    • The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
    • ter Schure EG, van Riel NA, Verrips CT. 2000. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67-83. https://doi.org/10.1111/j.1574-6976.2000.tb00533.x
    • (2000) FEMS Microbiol Rev , vol.24 , pp. 67-83
    • ter Schure, E.G.1    van Riel, N.A.2    Verrips, C.T.3
  • 17
    • 0032750741 scopus 로고    scopus 로고
    • Nitrogen catabolite repression in Saccharomyces cerevisiae
    • Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35-73. https://doi.org/10.1385/MB:12:1:35
    • (1999) Mol Biotechnol , vol.12 , pp. 35-73
    • Hofman-Bang, J.1
  • 18
    • 0030794656 scopus 로고    scopus 로고
    • Genetic regulation of nitrogen metabolism in the fungi
    • Marzluf GA. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17-32
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 17-32
    • Marzluf, G.A.1
  • 19
    • 0022323786 scopus 로고
    • Nitrogen catabolite repression in yeasts and filamentous fungi
    • Wiame JM, Grenson M, Arst HN, Jr. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1-88. https:// doi.org/10.1016/S0065-2911(08)60394-X
    • (1985) Adv Microb Physiol , vol.26 , pp. 1-88
    • Wiame, J.M.1    Grenson, M.2    Arst, H.N.3
  • 20
    • 0037094434 scopus 로고    scopus 로고
    • Nitrogen regulation in Saccharomyces cerevisiae
    • Magasanik B, Kaiser CA. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1-18. https://doi.org/10.1016/S0378-1119(02)00558-9
    • (2002) Gene , vol.290 , pp. 1-18
    • Magasanik, B.1    Kaiser, C.A.2
  • 21
    • 0034125472 scopus 로고    scopus 로고
    • The fungal GATA factors
    • Scazzocchio C. 2000. The fungal GATA factors. Curr Opin Microbiol 3:126-131. https://doi.org/10.1016/S1369-5274(00)00063-1
    • (2000) Curr Opin Microbiol , vol.3 , pp. 126-131
    • Scazzocchio, C.1
  • 22
    • 0029883192 scopus 로고    scopus 로고
    • Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae
    • Stanbrough M, Magasanik B. 1996. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J Bacteriol 178:2465-2468. https://doi.org/ 10.1128/jb.178.8.2465-2468.1996
    • (1996) J Bacteriol , vol.178 , pp. 2465-2468
    • Stanbrough, M.1    Magasanik, B.2
  • 23
    • 0028832649 scopus 로고
    • Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes
    • Stanbrough M, Rowen DW, Magasanik B. 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A 92:9450-9454. https://doi.org/10.1073/pnas.92.21.9450
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 9450-9454
    • Stanbrough, M.1    Rowen, D.W.2    Magasanik, B.3
  • 26
    • 0033582427 scopus 로고    scopus 로고
    • The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake
    • Haas H, Zadra I, Stöffler G, Angermayr K. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613-4619. https://doi.org/ 10.1074/jbc.274.8.4613
    • (1999) J Biol Chem , vol.274 , pp. 4613-4619
    • Haas, H.1    Zadra, I.2    Stöffler, G.3    Angermayr, K.4
  • 27
    • 0031686444 scopus 로고    scopus 로고
    • Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa
    • Zhou LW, Haas H, Marzluf GA. 1998. Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259: 532-540. https://doi.org/10.1007/s004380050845
    • (1998) Mol Gen Genet , vol.259 , pp. 532-540
    • Zhou, L.W.1    Haas, H.2    Marzluf, G.A.3
  • 28
    • 0027445390 scopus 로고
    • urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1
    • Voisard C, Wang J, McEvoy JL, Xu P, Leong SA. 1993. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091-7100. https://doi.org/10.1128/MCB.13.11.7091
    • (1993) Mol Cell Biol , vol.13 , pp. 7091-7100
    • Voisard, C.1    Wang, J.2    McEvoy, J.L.3    Xu, P.4    Leong, S.A.5
  • 29
    • 0031014876 scopus 로고    scopus 로고
    • White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa
    • Linden H, Macino G. 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98-109. https://doi.org/10.1093/emboj/16.1.98
    • (1997) EMBO J , vol.16 , pp. 98-109
    • Linden, H.1    Macino, G.2
  • 31
    • 0029864229 scopus 로고    scopus 로고
    • Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene
    • Sil A, Herskowitz I. 1996. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711-722. https://doi.org/10.1016/S0092-8674(00)81049-1
    • (1996) Cell , vol.84 , pp. 711-722
    • Sil, A.1    Herskowitz, I.2
  • 32
    • 0035852756 scopus 로고    scopus 로고
    • Ash1p is a site-specific DNA-binding protein that actively represses transcription
    • Maxon ME, Herskowitz I. 2001. Ash1p is a site-specific DNA-binding protein that actively represses transcription. Proc Natl Acad Sci U S A 98:1495-1500. https://doi.org/10.1073/pnas.98.4.1495
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 1495-1500
    • Maxon, M.E.1    Herskowitz, I.2
  • 33
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T, Hall MN. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689-692. https://doi.org/10.1038/45287
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 34
    • 0030028431 scopus 로고    scopus 로고
    • Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae
    • Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG. 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16:847-858. https://doi.org/10.1128/MCB.16.3.847
    • (1996) Mol Cell Biol , vol.16 , pp. 847-858
    • Coffman, J.A.1    Rai, R.2    Cunningham, T.3    Svetlov, V.4    Cooper, T.G.5
  • 35
    • 0035943726 scopus 로고    scopus 로고
    • Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae
    • Kulkarni AA, Abul-Hamd AT, Rai R, El Berry H, Cooper TG. 2001. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136-32144. https://doi.org/10.1074/jbc .M104580200
    • (2001) J Biol Chem , vol.276 , pp. 32136-32144
    • Kulkarni, A.A.1    Abul-Hamd, A.T.2    Rai, R.3    El Berry, H.4    Cooper, T.G.5
  • 36
    • 67650093251 scopus 로고    scopus 로고
    • The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation
    • Georis I, Feller A, Vierendeels F, Dubois E. 2009. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation. Mol Cell Biol 29:3803-3815. https://doi.org/ 10.1128/MCB.00399-09
    • (2009) Mol Cell Biol , vol.29 , pp. 3803-3815
    • Georis, I.1    Feller, A.2    Vierendeels, F.3    Dubois, E.4
  • 37
    • 0023252067 scopus 로고
    • Complementation of areA+ regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa
    • Davis MA, Hynes MJ. 1987. Complementation of areA+ regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc Natl Acad Sci U S A 84:3753-3757. https://doi.org/10.1073/pnas.84.11.3753
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 3753-3757
    • Davis, M.A.1    Hynes, M.J.2
  • 38
    • 0025220463 scopus 로고
    • The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger
    • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355-1364
    • (1990) EMBO J , vol.9 , pp. 1355-1364
    • Kudla, B.1    Caddick, M.X.2    Langdon, T.3    Martinez-Rossi, N.M.4    Bennett, C.F.5    Sibley, S.6    Davies, R.W.7    Arst, H.N.8
  • 39
    • 0032581725 scopus 로고    scopus 로고
    • Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator
    • Hoe KL, Won MS, Chung KS, Park SK, Kim DU, Jang YJ, Yoo OJ, Yoo HS. 1998. Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator. Gene 215: 319-328. https://doi.org/10.1016/S0378-1119(98)00301-1
    • (1998) Gene , vol.215 , pp. 319-328
    • Hoe, K.L.1    Won, M.S.2    Chung, K.S.3    Park, S.K.4    Kim, D.U.5    Jang, Y.J.6    Yoo, O.J.7    Yoo, H.S.8
  • 40
    • 84901609087 scopus 로고    scopus 로고
    • Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa
    • Gyöngyösi N, Káldi K. 2014. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 20:3007-3023. https://doi.org/10.1089/ars.2013.5558
    • (2014) Antioxid Redox Signal , vol.20 , pp. 3007-3023
    • Gyöngyösi, N.1    Káldi, K.2
  • 41
    • 15044365159 scopus 로고    scopus 로고
    • Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications
    • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM. 2005. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527-543. https://doi.org/10.1016/j.femsyr.2004.09.004
    • (2005) FEMS Yeast Res , vol.5 , pp. 527-543
    • Fickers, P.1    Benetti, P.H.2    Waché, Y.3    Marty, A.4    Mauersberger, S.5    Smit, M.S.6    Nicaud, J.M.7
  • 42
    • 84871820511 scopus 로고    scopus 로고
    • Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn 'em down
    • Kohlwein SD, Veenhuis M, van der Klei IJ. 2013. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn 'em down. Genetics 193:1-50. https://doi.org/ 10.1534/genetics.112.143362
    • (2013) Genetics , vol.193 , pp. 1-50
    • Kohlwein, S.D.1    Veenhuis, M.2    van der Klei, I.J.3
  • 43
    • 0036135597 scopus 로고    scopus 로고
    • Synthesis of triacylglycerols by the acylcoenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae
    • Sorger D, Daum G. 2002. Synthesis of triacylglycerols by the acylcoenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184:519-524. https:// doi.org/10.1128/JB.184.2.519-524.2002
    • (2002) J Bacteriol , vol.184 , pp. 519-524
    • Sorger, D.1    Daum, G.2
  • 44
    • 0037088637 scopus 로고    scopus 로고
    • The DGA1 gene determines a second triglyceride synthetic pathway in yeast
    • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL. 2002. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877-8881. https://doi.org/10.1074/jbc.M111646200
    • (2002) J Biol Chem , vol.277 , pp. 8877-8881
    • Oelkers, P.1    Cromley, D.2    Padamsee, M.3    Billheimer, J.T.4    Sturley, S.L.5
  • 45
    • 79961114473 scopus 로고    scopus 로고
    • YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica
    • Athenstaedt K. 2011. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta 1811:587-596. https://doi.org/10.1016/ j.bbalip.2011.07.004
    • (2011) Biochim Biophys Acta , vol.1811 , pp. 587-596
    • Athenstaedt, K.1
  • 46
    • 84866914709 scopus 로고    scopus 로고
    • Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast
    • Su WM, Han GS, Casciano J, Carman GM. 2012. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast. J Biol Chem 287: 33364-33376. https://doi.org/10.1074/jbc.M112.402339
    • (2012) J Biol Chem , vol.287 , pp. 33364-33376
    • Su, W.M.1    Han, G.S.2    Casciano, J.3    Carman, G.M.4
  • 47
    • 84859488188 scopus 로고    scopus 로고
    • Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
    • Choi HS, Su WM, Han GS, Plote D, Xu Z, Carman GM. 2012. Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J Biol Chem 287:11290-11301. https://doi.org/10.1074/jbc.M112.346023
    • (2012) J Biol Chem , vol.287 , pp. 11290-11301
    • Choi, H.S.1    Su, W.M.2    Han, G.S.3    Plote, D.4    Xu, Z.5    Carman, G.M.6
  • 48
    • 79955486102 scopus 로고    scopus 로고
    • The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
    • Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM. 2011. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043-1055. https://doi.org/ 10.1083/jcb.201010111
    • (2011) J Cell Biol , vol.192 , pp. 1043-1055
    • Adeyo, O.1    Horn, P.J.2    Lee, S.3    Binns, D.D.4    Chandrahas, A.5    Chapman, K.D.6    Goodman, J.M.7
  • 49
    • 35648995880 scopus 로고    scopus 로고
    • SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast
    • Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. 2007. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 282:30845-30855. https://doi.org/10.1074/jbc.M702719200
    • (2007) J Biol Chem , vol.282 , pp. 30845-30855
    • Benghezal, M.1    Roubaty, C.2    Veepuri, V.3    Knudsen, J.4    Conzelmann, A.5
  • 50
    • 35648981002 scopus 로고    scopus 로고
    • Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae
    • Jain S, Stanford N, Bhagwat N, Seiler B, Costanzo M, Boone C, Oelkers P. 2007. Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:30562-30569. https://doi.org/ 10.1074/jbc.M706326200
    • (2007) J Biol Chem , vol.282 , pp. 30562-30569
    • Jain, S.1    Stanford, N.2    Bhagwat, N.3    Seiler, B.4    Costanzo, M.5    Boone, C.6    Oelkers, P.7
  • 52
    • 0030867130 scopus 로고    scopus 로고
    • Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae
    • Athenstaedt K, Daum G. 1997. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol 179:7611-7616. https://doi.org/10.1128/jb.179.24.7611-7616.1997
    • (1997) J Bacteriol , vol.179 , pp. 7611-7616
    • Athenstaedt, K.1    Daum, G.2
  • 53
    • 0030944694 scopus 로고    scopus 로고
    • Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae
    • Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG. 1997. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179: 3416-3429. https://doi.org/10.1128/jb.179.11.3416-3429.1997
    • (1997) J Bacteriol , vol.179 , pp. 3416-3429
    • Coffman, J.A.1    Rai, R.2    Loprete, D.M.3    Cunningham, T.4    Svetlov, V.5    Cooper, T.G.6
  • 54
    • 0025063371 scopus 로고
    • Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae
    • Miller SM, Magasanik B. 1990. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172:4927-4935. https://doi.org/10.1128/jb.172.9.4927-4935.1990
    • (1990) J Bacteriol , vol.172 , pp. 4927-4935
    • Miller, S.M.1    Magasanik, B.2
  • 55
    • 0032513214 scopus 로고    scopus 로고
    • The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites
    • Panozzo C, Cornillot E, Felenbok B. 1998. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367-6372. https://doi.org/10.1074/jbc.273.11.6367
    • (1998) J Biol Chem , vol.273 , pp. 6367-6372
    • Panozzo, C.1    Cornillot, E.2    Felenbok, B.3
  • 56
    • 0028293916 scopus 로고
    • Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1
    • Lundin M, Nehlin JO, Ronne H. 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979-1985. https://doi.org/10.1128/MCB.14.3.1979
    • (1994) Mol Cell Biol , vol.14 , pp. 1979-1985
    • Lundin, M.1    Nehlin, J.O.2    Ronne, H.3
  • 58
    • 84873450128 scopus 로고    scopus 로고
    • Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
    • Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM. 2013. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta 1831:675-682. https:// doi.org/10.1016/j.bbalip.2012.12.010
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 675-682
    • Wang, Z.P.1    Xu, H.M.2    Wang, G.Y.3    Chi, Z.4    Chi, Z.M.5
  • 59
    • 71449094775 scopus 로고    scopus 로고
    • Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy
    • Wong KH, Hynes MJ, Todd RB, Davis MA. 2009. Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology 155:3868-3880. https://doi.org/ 10.1099/mic.0.031252-0
    • (2009) Microbiology , vol.155 , pp. 3868-3880
    • Wong, K.H.1    Hynes, M.J.2    Todd, R.B.3    Davis, M.A.4
  • 61
    • 78649444905 scopus 로고    scopus 로고
    • An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica
    • Poopanitpan N, Kobayashi S, Fukuda R, Horiuchi H, Ohta A. 2010. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica. Biochem Biophys Res Commun 402:731-735. https:// doi.org/10.1016/j.bbrc.2010.10.096
    • (2010) Biochem Biophys Res Commun , vol.402 , pp. 731-735
    • Poopanitpan, N.1    Kobayashi, S.2    Fukuda, R.3    Horiuchi, H.4    Ohta, A.5
  • 62
    • 0028401927 scopus 로고
    • Combined use of sequence similarity and codon bias for coding region identification
    • States DJ, Gish W. 1994. Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1:39-50. https:// doi.org/10.1089/cmb.1994.1.39
    • (1994) J Comput Biol , vol.1 , pp. 39-50
    • States, D.J.1    Gish, W.2
  • 64
    • 24644503098 scopus 로고    scopus 로고
    • Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
    • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676. https:// doi.org/10.1093/bioinformatics/bti610
    • (2005) Bioinformatics , vol.21 , pp. 3674-3676
    • Conesa, A.1    Gotz, S.2    Garcia-Gomez, J.M.3    Terol, J.4    Talon, M.5    Robles, M.6
  • 65
    • 13244255415 scopus 로고    scopus 로고
    • MUSCLE: a multiple sequence alignment method with reduced time and space complexity
    • Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https:// doi.org/10.1186/1471-2105-5-113
    • (2004) BMC Bioinformatics , vol.5 , pp. 113
    • Edgar, R.C.1
  • 66
    • 84890330527 scopus 로고    scopus 로고
    • MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
    • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-2729. https://doi.org/10.1093/molbev/mst197
    • (2013) Mol Biol Evol , vol.30 , pp. 2725-2729
    • Tamura, K.1    Stecher, G.2    Peterson, D.3    Filipski, A.4    Kumar, S.5
  • 67
    • 85009461393 scopus 로고    scopus 로고
    • Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29
    • Pomraning KR, Baker SE. 2015. Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29. Genome Announc 3:e01211-15. https://doi.org/10.1128/genomeA.01211-15
    • (2015) Genome Announc , vol.3
    • Pomraning, K.R.1    Baker, S.E.2
  • 68
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-96. https://doi.org/10.1016/S0076-6879(02)50957-5
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 69
    • 33845261493 scopus 로고
    • A rapid method of total lipid extraction and purification
    • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917. https://doi.org/10.1139/ o59-099
    • (1959) Can J Biochem Physiol , vol.37 , pp. 911-917
    • Bligh, E.G.1    Dyer, W.J.2
  • 70
    • 84929378123 scopus 로고    scopus 로고
    • Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis
    • Pomraning KR, Wei S, Karagiosis SA, Kim YM, Dohnalkova AC, Arey BW, Bredeweg EL, Orr G, Metz TO, Baker SE. 2015. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One 10:e0123188. https://doi.org/10.1371/journal.pone.0123188
    • (2015) PLoS One , vol.10
    • Pomraning, K.R.1    Wei, S.2    Karagiosis, S.A.3    Kim, Y.M.4    Dohnalkova, A.C.5    Arey, B.W.6    Bredeweg, E.L.7    Orr, G.8    Metz, T.O.9    Baker, S.E.10
  • 71
    • 84863205849 scopus 로고    scopus 로고
    • NIH Image to ImageJ: 25 years of image analysis
    • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675. https://doi.org/ 10.1038/nmeth.2089
    • (2012) Nat Methods , vol.9 , pp. 671-675
    • Schneider, C.A.1    Rasband, W.S.2    Eliceiri, K.W.3
  • 73
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie. 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2 Nat Methods 9:357-359. https://doi.org/10.1038/nmeth.1923
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 76
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: new features for data integration and network visualization
    • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-432. https://doi.org/10.1093/bioinformatics/btq675
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1    Ono, K.2    Ruscheinski, J.3    Wang, P.L.4    Ideker, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.