-
1
-
-
84946782577
-
Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi
-
Calvey CH, Su YK, Willis LB, McGee M, Jeffries TW. 2016. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol 200:780-788. https://doi.org/10.1016/j.biortech.2015.10.104
-
(2016)
Bioresour Technol
, vol.200
, pp. 780-788
-
-
Calvey, C.H.1
Su, Y.K.2
Willis, L.B.3
McGee, M.4
Jeffries, T.W.5
-
2
-
-
0034775578
-
Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina
-
Wynn JP, Hamid AA, Li Y, Ratledge C. 2001. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147: 2857-2864. https://doi.org/10.1099/00221287-147-10-2857
-
(2001)
Microbiology
, vol.147
, pp. 2857-2864
-
-
Wynn, J.P.1
Hamid, A.A.2
Li, Y.3
Ratledge, C.4
-
3
-
-
84957628656
-
Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level
-
Tang X, Zan X, Zhao L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C. 2016. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Fact 15:35. https://doi.org/10.1186/ s12934-016-0428-4
-
(2016)
Microb Cell Fact
, vol.15
, pp. 35
-
-
Tang, X.1
Zan, X.2
Zhao, L.3
Chen, H.4
Chen, Y.Q.5
Chen, W.6
Song, Y.7
Ratledge, C.8
-
4
-
-
84959544035
-
Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation
-
Kolouchová I, Matátková O, Sigler K, Masák J, Rezanka T. 2016. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol (Praha) 61:431-438. https://doi.org/10.1007/s12223-016-0454-y
-
(2016)
Folia Microbiol (Praha)
, vol.61
, pp. 431-438
-
-
Kolouchová, I.1
Matátková, O.2
Sigler, K.3
Masák, J.4
Rezanka, T.5
-
5
-
-
77951093389
-
Phosphate-limitation mediated lipid production by Rhodosporidium toruloides
-
Wu S, Hu C, Jin G, Zhao X, Zhao ZK. 2010. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101: 6124-6129. https://doi.org/10.1016/j.biortech.2010.02.111
-
(2010)
Bioresour Technol
, vol.101
, pp. 6124-6129
-
-
Wu, S.1
Hu, C.2
Jin, G.3
Zhao, X.4
Zhao, Z.K.5
-
6
-
-
78650711252
-
Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions
-
Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. 2011. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803-1807. https://doi.org/10.1016/j.biortech.2010.09.033
-
(2011)
Bioresour Technol
, vol.102
, pp. 1803-1807
-
-
Wu, S.1
Zhao, X.2
Shen, H.3
Wang, Q.4
Zhao, Z.K.5
-
7
-
-
0025310930
-
Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios
-
Park WS, Murphy PA, Glatz BA. 1990. Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36:318-326. https://doi.org/ 10.1139/m90-056
-
(1990)
Can J Microbiol
, vol.36
, pp. 318-326
-
-
Park, W.S.1
Murphy, P.A.2
Glatz, B.A.3
-
8
-
-
84982863805
-
High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium
-
Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G. 2016. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116-126. https://doi.org/ 10.1016/j.jbiotec.2016.08.001
-
(2016)
J Biotechnol
, vol.234
, pp. 116-126
-
-
Bellou, S.1
Triantaphyllidou, I.E.2
Mizerakis, P.3
Aggelis, G.4
-
9
-
-
84991244043
-
Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
-
3 March
-
Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. 3 March 2016. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst Biol Appl https://doi.org/10.1038/npjsba.2016.5
-
(2016)
NPJ Syst Biol Appl
-
-
Kerkhoven, E.J.1
Pomraning, K.R.2
Baker, S.E.3
Nielsen, J.4
-
10
-
-
0036865034
-
Regulation of lipid accumulation in oleaginous microorganisms
-
Ratledge C. 2002. Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30:1047-1050
-
(2002)
Biochem Soc Trans
, vol.30
, pp. 1047-1050
-
-
Ratledge, C.1
-
11
-
-
84900478190
-
Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions
-
Sestric R, Munch G, Cicek N, Sparling R, Levin DB. 2014. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresour Technol 164:41-46. https://doi.org/10.1016/j.biortech.2014.04.016
-
(2014)
Bioresour Technol
, vol.164
, pp. 41-46
-
-
Sestric, R.1
Munch, G.2
Cicek, N.3
Sparling, R.4
Levin, D.B.5
-
12
-
-
81555207963
-
Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
-
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2011. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6:e27966. https://doi.org/ 10.1371/journal.pone.0027966
-
(2011)
PLoS One
, vol.6
-
-
Morin, N.1
Cescut, J.2
Beopoulos, A.3
Lelandais, G.4
Le Berre, V.5
Uribelarrea, J.L.6
Molina-Jouve, C.7
Nicaud, J.M.8
-
13
-
-
0021229450
-
Effect of nitrogen source on lipid accumulation in oleaginous yeasts
-
Evans CT, Ratledge C. 1984. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J Gen Microbiol 130:1693-1704. https:// doi.org/10.1099/00221287-130-7-1693
-
(1984)
J Gen Microbiol
, vol.130
, pp. 1693-1704
-
-
Evans, C.T.1
Ratledge, C.2
-
14
-
-
84896696867
-
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
-
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. 2014. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254-299. https:// doi.org/10.1111/1574-6976.12065
-
(2014)
FEMS Microbiol Rev
, vol.38
, pp. 254-299
-
-
Conrad, M.1
Schothorst, J.2
Kankipati, H.N.3
Van Zeebroeck, G.4
Rubio-Texeira, M.5
Thevelein, J.M.6
-
15
-
-
0036024577
-
Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots
-
Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223-238. https://doi.org/10.1111/ j.1574-6976.2002.tb00612.x
-
(2002)
FEMS Microbiol Rev
, vol.26
, pp. 223-238
-
-
Cooper, T.G.1
-
16
-
-
0033955802
-
The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
-
ter Schure EG, van Riel NA, Verrips CT. 2000. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67-83. https://doi.org/10.1111/j.1574-6976.2000.tb00533.x
-
(2000)
FEMS Microbiol Rev
, vol.24
, pp. 67-83
-
-
ter Schure, E.G.1
van Riel, N.A.2
Verrips, C.T.3
-
17
-
-
0032750741
-
Nitrogen catabolite repression in Saccharomyces cerevisiae
-
Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35-73. https://doi.org/10.1385/MB:12:1:35
-
(1999)
Mol Biotechnol
, vol.12
, pp. 35-73
-
-
Hofman-Bang, J.1
-
18
-
-
0030794656
-
Genetic regulation of nitrogen metabolism in the fungi
-
Marzluf GA. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17-32
-
(1997)
Microbiol Mol Biol Rev
, vol.61
, pp. 17-32
-
-
Marzluf, G.A.1
-
19
-
-
0022323786
-
Nitrogen catabolite repression in yeasts and filamentous fungi
-
Wiame JM, Grenson M, Arst HN, Jr. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1-88. https:// doi.org/10.1016/S0065-2911(08)60394-X
-
(1985)
Adv Microb Physiol
, vol.26
, pp. 1-88
-
-
Wiame, J.M.1
Grenson, M.2
Arst, H.N.3
-
20
-
-
0037094434
-
Nitrogen regulation in Saccharomyces cerevisiae
-
Magasanik B, Kaiser CA. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1-18. https://doi.org/10.1016/S0378-1119(02)00558-9
-
(2002)
Gene
, vol.290
, pp. 1-18
-
-
Magasanik, B.1
Kaiser, C.A.2
-
21
-
-
0034125472
-
The fungal GATA factors
-
Scazzocchio C. 2000. The fungal GATA factors. Curr Opin Microbiol 3:126-131. https://doi.org/10.1016/S1369-5274(00)00063-1
-
(2000)
Curr Opin Microbiol
, vol.3
, pp. 126-131
-
-
Scazzocchio, C.1
-
22
-
-
0029883192
-
Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae
-
Stanbrough M, Magasanik B. 1996. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J Bacteriol 178:2465-2468. https://doi.org/ 10.1128/jb.178.8.2465-2468.1996
-
(1996)
J Bacteriol
, vol.178
, pp. 2465-2468
-
-
Stanbrough, M.1
Magasanik, B.2
-
23
-
-
0028832649
-
Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes
-
Stanbrough M, Rowen DW, Magasanik B. 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A 92:9450-9454. https://doi.org/10.1073/pnas.92.21.9450
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 9450-9454
-
-
Stanbrough, M.1
Rowen, D.W.2
Magasanik, B.3
-
24
-
-
84959172287
-
Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica
-
Pomraning KR, Kim YM, Nicora CD, Chu RK, Bredeweg EL, Purvine SO, Hu D, Metz TO, Baker SE. 2016. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica. BMC Genomics 17:138. https://doi.org/10.1186/s12864-016-2471-2
-
(2016)
BMC Genomics
, vol.17
, pp. 138
-
-
Pomraning, K.R.1
Kim, Y.M.2
Nicora, C.D.3
Chu, R.K.4
Bredeweg, E.L.5
Purvine, S.O.6
Hu, D.7
Metz, T.O.8
Baker, S.E.9
-
25
-
-
85007610605
-
A molecular genetic toolbox for Yarrowia lipolytica
-
Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE. 2017. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol Biofuels 10:2. https://doi.org/10.1186/s13068-016-0687-7
-
(2017)
Biotechnol Biofuels
, vol.10
, pp. 2
-
-
Bredeweg, E.L.1
Pomraning, K.R.2
Dai, Z.3
Nielsen, J.4
Kerkhoven, E.J.5
Baker, S.E.6
-
26
-
-
0033582427
-
The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake
-
Haas H, Zadra I, Stöffler G, Angermayr K. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613-4619. https://doi.org/ 10.1074/jbc.274.8.4613
-
(1999)
J Biol Chem
, vol.274
, pp. 4613-4619
-
-
Haas, H.1
Zadra, I.2
Stöffler, G.3
Angermayr, K.4
-
27
-
-
0031686444
-
Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa
-
Zhou LW, Haas H, Marzluf GA. 1998. Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259: 532-540. https://doi.org/10.1007/s004380050845
-
(1998)
Mol Gen Genet
, vol.259
, pp. 532-540
-
-
Zhou, L.W.1
Haas, H.2
Marzluf, G.A.3
-
28
-
-
0027445390
-
urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1
-
Voisard C, Wang J, McEvoy JL, Xu P, Leong SA. 1993. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091-7100. https://doi.org/10.1128/MCB.13.11.7091
-
(1993)
Mol Cell Biol
, vol.13
, pp. 7091-7100
-
-
Voisard, C.1
Wang, J.2
McEvoy, J.L.3
Xu, P.4
Leong, S.A.5
-
29
-
-
0031014876
-
White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa
-
Linden H, Macino G. 1997. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98-109. https://doi.org/10.1093/emboj/16.1.98
-
(1997)
EMBO J
, vol.16
, pp. 98-109
-
-
Linden, H.1
Macino, G.2
-
30
-
-
77956144334
-
Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora White Collar Complex
-
Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M. 2010. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora White Collar Complex. Eukaryot Cell 9:1549-1556. https://doi.org/10.1128/EC.00154-10
-
(2010)
Eukaryot Cell
, vol.9
, pp. 1549-1556
-
-
Smith, K.M.1
Sancar, G.2
Dekhang, R.3
Sullivan, C.M.4
Li, S.5
Tag, A.G.6
Sancar, C.7
Bredeweg, E.L.8
Priest, H.D.9
McCormick, R.F.10
Thomas, T.L.11
Carrington, J.C.12
Stajich, J.E.13
Bell-Pedersen, D.14
Brunner, M.15
Freitag, M.16
-
31
-
-
0029864229
-
Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene
-
Sil A, Herskowitz I. 1996. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711-722. https://doi.org/10.1016/S0092-8674(00)81049-1
-
(1996)
Cell
, vol.84
, pp. 711-722
-
-
Sil, A.1
Herskowitz, I.2
-
32
-
-
0035852756
-
Ash1p is a site-specific DNA-binding protein that actively represses transcription
-
Maxon ME, Herskowitz I. 2001. Ash1p is a site-specific DNA-binding protein that actively represses transcription. Proc Natl Acad Sci U S A 98:1495-1500. https://doi.org/10.1073/pnas.98.4.1495
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 1495-1500
-
-
Maxon, M.E.1
Herskowitz, I.2
-
33
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck T, Hall MN. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689-692. https://doi.org/10.1038/45287
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
34
-
-
0030028431
-
Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae
-
Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG. 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16:847-858. https://doi.org/10.1128/MCB.16.3.847
-
(1996)
Mol Cell Biol
, vol.16
, pp. 847-858
-
-
Coffman, J.A.1
Rai, R.2
Cunningham, T.3
Svetlov, V.4
Cooper, T.G.5
-
35
-
-
0035943726
-
Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae
-
Kulkarni AA, Abul-Hamd AT, Rai R, El Berry H, Cooper TG. 2001. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136-32144. https://doi.org/10.1074/jbc .M104580200
-
(2001)
J Biol Chem
, vol.276
, pp. 32136-32144
-
-
Kulkarni, A.A.1
Abul-Hamd, A.T.2
Rai, R.3
El Berry, H.4
Cooper, T.G.5
-
36
-
-
67650093251
-
The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation
-
Georis I, Feller A, Vierendeels F, Dubois E. 2009. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation. Mol Cell Biol 29:3803-3815. https://doi.org/ 10.1128/MCB.00399-09
-
(2009)
Mol Cell Biol
, vol.29
, pp. 3803-3815
-
-
Georis, I.1
Feller, A.2
Vierendeels, F.3
Dubois, E.4
-
37
-
-
0023252067
-
Complementation of areA+ regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa
-
Davis MA, Hynes MJ. 1987. Complementation of areA+ regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc Natl Acad Sci U S A 84:3753-3757. https://doi.org/10.1073/pnas.84.11.3753
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, pp. 3753-3757
-
-
Davis, M.A.1
Hynes, M.J.2
-
38
-
-
0025220463
-
The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger
-
Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN, Jr. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355-1364
-
(1990)
EMBO J
, vol.9
, pp. 1355-1364
-
-
Kudla, B.1
Caddick, M.X.2
Langdon, T.3
Martinez-Rossi, N.M.4
Bennett, C.F.5
Sibley, S.6
Davies, R.W.7
Arst, H.N.8
-
39
-
-
0032581725
-
Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator
-
Hoe KL, Won MS, Chung KS, Park SK, Kim DU, Jang YJ, Yoo OJ, Yoo HS. 1998. Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator. Gene 215: 319-328. https://doi.org/10.1016/S0378-1119(98)00301-1
-
(1998)
Gene
, vol.215
, pp. 319-328
-
-
Hoe, K.L.1
Won, M.S.2
Chung, K.S.3
Park, S.K.4
Kim, D.U.5
Jang, Y.J.6
Yoo, O.J.7
Yoo, H.S.8
-
40
-
-
84901609087
-
Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa
-
Gyöngyösi N, Káldi K. 2014. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 20:3007-3023. https://doi.org/10.1089/ars.2013.5558
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 3007-3023
-
-
Gyöngyösi, N.1
Káldi, K.2
-
41
-
-
15044365159
-
Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications
-
Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM. 2005. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527-543. https://doi.org/10.1016/j.femsyr.2004.09.004
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 527-543
-
-
Fickers, P.1
Benetti, P.H.2
Waché, Y.3
Marty, A.4
Mauersberger, S.5
Smit, M.S.6
Nicaud, J.M.7
-
42
-
-
84871820511
-
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn 'em down
-
Kohlwein SD, Veenhuis M, van der Klei IJ. 2013. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn 'em down. Genetics 193:1-50. https://doi.org/ 10.1534/genetics.112.143362
-
(2013)
Genetics
, vol.193
, pp. 1-50
-
-
Kohlwein, S.D.1
Veenhuis, M.2
van der Klei, I.J.3
-
43
-
-
0036135597
-
Synthesis of triacylglycerols by the acylcoenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae
-
Sorger D, Daum G. 2002. Synthesis of triacylglycerols by the acylcoenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184:519-524. https:// doi.org/10.1128/JB.184.2.519-524.2002
-
(2002)
J Bacteriol
, vol.184
, pp. 519-524
-
-
Sorger, D.1
Daum, G.2
-
44
-
-
0037088637
-
The DGA1 gene determines a second triglyceride synthetic pathway in yeast
-
Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL. 2002. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877-8881. https://doi.org/10.1074/jbc.M111646200
-
(2002)
J Biol Chem
, vol.277
, pp. 8877-8881
-
-
Oelkers, P.1
Cromley, D.2
Padamsee, M.3
Billheimer, J.T.4
Sturley, S.L.5
-
45
-
-
79961114473
-
YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica
-
Athenstaedt K. 2011. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta 1811:587-596. https://doi.org/10.1016/ j.bbalip.2011.07.004
-
(2011)
Biochim Biophys Acta
, vol.1811
, pp. 587-596
-
-
Athenstaedt, K.1
-
46
-
-
84866914709
-
Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast
-
Su WM, Han GS, Casciano J, Carman GM. 2012. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast. J Biol Chem 287: 33364-33376. https://doi.org/10.1074/jbc.M112.402339
-
(2012)
J Biol Chem
, vol.287
, pp. 33364-33376
-
-
Su, W.M.1
Han, G.S.2
Casciano, J.3
Carman, G.M.4
-
47
-
-
84859488188
-
Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
-
Choi HS, Su WM, Han GS, Plote D, Xu Z, Carman GM. 2012. Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J Biol Chem 287:11290-11301. https://doi.org/10.1074/jbc.M112.346023
-
(2012)
J Biol Chem
, vol.287
, pp. 11290-11301
-
-
Choi, H.S.1
Su, W.M.2
Han, G.S.3
Plote, D.4
Xu, Z.5
Carman, G.M.6
-
48
-
-
79955486102
-
The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
-
Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM. 2011. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043-1055. https://doi.org/ 10.1083/jcb.201010111
-
(2011)
J Cell Biol
, vol.192
, pp. 1043-1055
-
-
Adeyo, O.1
Horn, P.J.2
Lee, S.3
Binns, D.D.4
Chandrahas, A.5
Chapman, K.D.6
Goodman, J.M.7
-
49
-
-
35648995880
-
SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast
-
Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. 2007. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 282:30845-30855. https://doi.org/10.1074/jbc.M702719200
-
(2007)
J Biol Chem
, vol.282
, pp. 30845-30855
-
-
Benghezal, M.1
Roubaty, C.2
Veepuri, V.3
Knudsen, J.4
Conzelmann, A.5
-
50
-
-
35648981002
-
Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae
-
Jain S, Stanford N, Bhagwat N, Seiler B, Costanzo M, Boone C, Oelkers P. 2007. Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:30562-30569. https://doi.org/ 10.1074/jbc.M706326200
-
(2007)
J Biol Chem
, vol.282
, pp. 30562-30569
-
-
Jain, S.1
Stanford, N.2
Bhagwat, N.3
Seiler, B.4
Costanzo, M.5
Boone, C.6
Oelkers, P.7
-
51
-
-
84855883560
-
YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis
-
Ayciriex S, Le Guédard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E. 2012. YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell 23:233-246. https://doi.org/10.1091/ mbc.E11-07-0650
-
(2012)
Mol Biol Cell
, vol.23
, pp. 233-246
-
-
Ayciriex, S.1
Le Guédard, M.2
Camougrand, N.3
Velours, G.4
Schoene, M.5
Leone, S.6
Wattelet-Boyer, V.7
Dupuy, J.W.8
Shevchenko, A.9
Schmitter, J.M.10
Lessire, R.11
Bessoule, J.J.12
Testet, E.13
-
52
-
-
0030867130
-
Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae
-
Athenstaedt K, Daum G. 1997. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol 179:7611-7616. https://doi.org/10.1128/jb.179.24.7611-7616.1997
-
(1997)
J Bacteriol
, vol.179
, pp. 7611-7616
-
-
Athenstaedt, K.1
Daum, G.2
-
53
-
-
0030944694
-
Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae
-
Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG. 1997. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179: 3416-3429. https://doi.org/10.1128/jb.179.11.3416-3429.1997
-
(1997)
J Bacteriol
, vol.179
, pp. 3416-3429
-
-
Coffman, J.A.1
Rai, R.2
Loprete, D.M.3
Cunningham, T.4
Svetlov, V.5
Cooper, T.G.6
-
54
-
-
0025063371
-
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae
-
Miller SM, Magasanik B. 1990. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172:4927-4935. https://doi.org/10.1128/jb.172.9.4927-4935.1990
-
(1990)
J Bacteriol
, vol.172
, pp. 4927-4935
-
-
Miller, S.M.1
Magasanik, B.2
-
55
-
-
0032513214
-
The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites
-
Panozzo C, Cornillot E, Felenbok B. 1998. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367-6372. https://doi.org/10.1074/jbc.273.11.6367
-
(1998)
J Biol Chem
, vol.273
, pp. 6367-6372
-
-
Panozzo, C.1
Cornillot, E.2
Felenbok, B.3
-
56
-
-
0028293916
-
Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1
-
Lundin M, Nehlin JO, Ronne H. 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979-1985. https://doi.org/10.1128/MCB.14.3.1979
-
(1994)
Mol Cell Biol
, vol.14
, pp. 1979-1985
-
-
Lundin, M.1
Nehlin, J.O.2
Ronne, H.3
-
57
-
-
57749121616
-
A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleo-some exclusion at promoters
-
Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Yeo AL, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, Hughes TR. 2008. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleo-some exclusion at promoters. Mol Cell 32:878-887. https://doi.org/ 10.1016/j.molcel.2008.11.020
-
(2008)
Mol Cell
, vol.32
, pp. 878-887
-
-
Badis, G.1
Chan, E.T.2
van Bakel, H.3
Pena-Castillo, L.4
Tillo, D.5
Tsui, K.6
Carlson, C.D.7
Gossett, A.J.8
Hasinoff, M.J.9
Warren, C.L.10
Gebbia, M.11
Talukder, S.12
Yang, A.13
Mnaimneh, S.14
Terterov, D.15
Coburn, D.16
Yeo, A.L.17
Yeo, Z.X.18
Clarke, N.D.19
Lieb, J.D.20
Ansari, A.Z.21
Nislow, C.22
Hughes, T.R.23
more..
-
58
-
-
84873450128
-
Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
-
Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM. 2013. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta 1831:675-682. https:// doi.org/10.1016/j.bbalip.2012.12.010
-
(2013)
Biochim Biophys Acta
, vol.1831
, pp. 675-682
-
-
Wang, Z.P.1
Xu, H.M.2
Wang, G.Y.3
Chi, Z.4
Chi, Z.M.5
-
59
-
-
71449094775
-
Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy
-
Wong KH, Hynes MJ, Todd RB, Davis MA. 2009. Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology 155:3868-3880. https://doi.org/ 10.1099/mic.0.031252-0
-
(2009)
Microbiology
, vol.155
, pp. 3868-3880
-
-
Wong, K.H.1
Hynes, M.J.2
Todd, R.B.3
Davis, M.A.4
-
60
-
-
70350205608
-
Yarrowia lipolytica as a model for bio-oil production
-
Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. 2009. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375-387. https://doi.org/10.1016/j.plipres.2009.08.005
-
(2009)
Prog Lipid Res
, vol.48
, pp. 375-387
-
-
Beopoulos, A.1
Cescut, J.2
Haddouche, R.3
Uribelarrea, J.L.4
Molina-Jouve, C.5
Nicaud, J.M.6
-
61
-
-
78649444905
-
An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica
-
Poopanitpan N, Kobayashi S, Fukuda R, Horiuchi H, Ohta A. 2010. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica. Biochem Biophys Res Commun 402:731-735. https:// doi.org/10.1016/j.bbrc.2010.10.096
-
(2010)
Biochem Biophys Res Commun
, vol.402
, pp. 731-735
-
-
Poopanitpan, N.1
Kobayashi, S.2
Fukuda, R.3
Horiuchi, H.4
Ohta, A.5
-
62
-
-
0028401927
-
Combined use of sequence similarity and codon bias for coding region identification
-
States DJ, Gish W. 1994. Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1:39-50. https:// doi.org/10.1089/cmb.1994.1.39
-
(1994)
J Comput Biol
, vol.1
, pp. 39-50
-
-
States, D.J.1
Gish, W.2
-
63
-
-
84899518211
-
InterProScan 5: genome-scale protein function classification
-
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240. https://doi.org/10.1093/bioinformatics/btu031
-
(2014)
Bioinformatics
, vol.30
, pp. 1236-1240
-
-
Jones, P.1
Binns, D.2
Chang, H.Y.3
Fraser, M.4
Li, W.5
McAnulla, C.6
McWilliam, H.7
Maslen, J.8
Mitchell, A.9
Nuka, G.10
Pesseat, S.11
Quinn, A.F.12
Sangrador-Vegas, A.13
Scheremetjew, M.14
Yong, S.Y.15
Lopez, R.16
Hunter, S.17
-
64
-
-
24644503098
-
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
-
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676. https:// doi.org/10.1093/bioinformatics/bti610
-
(2005)
Bioinformatics
, vol.21
, pp. 3674-3676
-
-
Conesa, A.1
Gotz, S.2
Garcia-Gomez, J.M.3
Terol, J.4
Talon, M.5
Robles, M.6
-
65
-
-
13244255415
-
MUSCLE: a multiple sequence alignment method with reduced time and space complexity
-
Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https:// doi.org/10.1186/1471-2105-5-113
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 113
-
-
Edgar, R.C.1
-
66
-
-
84890330527
-
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
-
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-2729. https://doi.org/10.1093/molbev/mst197
-
(2013)
Mol Biol Evol
, vol.30
, pp. 2725-2729
-
-
Tamura, K.1
Stecher, G.2
Peterson, D.3
Filipski, A.4
Kumar, S.5
-
67
-
-
85009461393
-
Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29
-
Pomraning KR, Baker SE. 2015. Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29. Genome Announc 3:e01211-15. https://doi.org/10.1128/genomeA.01211-15
-
(2015)
Genome Announc
, vol.3
-
-
Pomraning, K.R.1
Baker, S.E.2
-
68
-
-
0036270543
-
Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method
-
Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-96. https://doi.org/10.1016/S0076-6879(02)50957-5
-
(2002)
Methods Enzymol
, vol.350
, pp. 87-96
-
-
Gietz, R.D.1
Woods, R.A.2
-
69
-
-
33845261493
-
A rapid method of total lipid extraction and purification
-
Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917. https://doi.org/10.1139/ o59-099
-
(1959)
Can J Biochem Physiol
, vol.37
, pp. 911-917
-
-
Bligh, E.G.1
Dyer, W.J.2
-
70
-
-
84929378123
-
Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis
-
Pomraning KR, Wei S, Karagiosis SA, Kim YM, Dohnalkova AC, Arey BW, Bredeweg EL, Orr G, Metz TO, Baker SE. 2015. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One 10:e0123188. https://doi.org/10.1371/journal.pone.0123188
-
(2015)
PLoS One
, vol.10
-
-
Pomraning, K.R.1
Wei, S.2
Karagiosis, S.A.3
Kim, Y.M.4
Dohnalkova, A.C.5
Arey, B.W.6
Bredeweg, E.L.7
Orr, G.8
Metz, T.O.9
Baker, S.E.10
-
71
-
-
84863205849
-
NIH Image to ImageJ: 25 years of image analysis
-
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675. https://doi.org/ 10.1038/nmeth.2089
-
(2012)
Nat Methods
, vol.9
, pp. 671-675
-
-
Schneider, C.A.1
Rasband, W.S.2
Eliceiri, K.W.3
-
72
-
-
3042720475
-
Genome evolution in yeasts
-
Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, et al. 2004. Genome evolution in yeasts. Nature 430:35-44. https://doi.org/10.1038/nature02579
-
(2004)
Nature
, vol.430
, pp. 35-44
-
-
Dujon, B.1
Sherman, D.2
Fischer, G.3
Durrens, P.4
Casaregola, S.5
Lafontaine, I.6
De Montigny, J.7
Marck, C.8
Neuvéglise, C.9
Talla, E.10
Goffard, N.11
Frangeul, L.12
Aigle, M.13
Anthouard, V.14
Babour, A.15
Barbe, V.16
Barnay, S.17
Blanchin, S.18
Beckerich, J.M.19
Beyne, E.20
Bleykasten, C.21
Boisramé, A.22
Boyer, J.23
Cattolico, L.24
Confanioleri, F.25
De Daruvar, A.26
Despons, L.27
Fabre, E.28
Fairhead, C.29
Ferry-Dumazet, H.30
Groppi, A.31
Hantraye, F.32
Hennequin, C.33
Jauniaux, N.34
Joyet, P.35
Kachouri, R.36
Kerrest, A.37
Koszul, R.38
Lemaire, M.39
Lesur, I.40
Ma, L.41
Muller, H.42
Nicaud, J.M.43
Nikolski, M.44
Oztas, S.45
Ozier-Kalogeropoulos, O.46
Pellenz, S.47
Potier, S.48
Richard, G.F.49
Straub, M.L.50
Suleau, A.51
more..
-
73
-
-
84859210032
-
Fast gapped-read alignment with Bowtie. 2
-
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2 Nat Methods 9:357-359. https://doi.org/10.1038/nmeth.1923
-
(2012)
Nat Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
74
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks
-
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562-578. https://doi.org/10.1038/nprot.2012.016
-
(2012)
Nat Protoc
, vol.7
, pp. 562-578
-
-
Trapnell, C.1
Roberts, A.2
Goff, L.3
Pertea, G.4
Kim, D.5
Kelley, D.R.6
Pimentel, H.7
Salzberg, S.L.8
Rinn, J.L.9
Pachter, L.10
-
75
-
-
84938748671
-
FunRich: an open access standalone functional enrichment and interaction network analysis tool
-
Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S. 2015. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597-2601. https://doi.org/ 10.1002/pmic.201400515
-
(2015)
Proteomics
, vol.15
, pp. 2597-2601
-
-
Pathan, M.1
Keerthikumar, S.2
Ang, C.S.3
Gangoda, L.4
Quek, C.Y.5
Williamson, N.A.6
Mouradov, D.7
Sieber, O.M.8
Simpson, R.J.9
Salim, A.10
Bacic, A.11
Hill, A.F.12
Stroud, D.A.13
Ryan, M.T.14
Agbinya, J.I.15
Mariadason, J.M.16
Burgess, A.W.17
Mathivanan, S.18
-
76
-
-
79551587720
-
Cytoscape 2.8: new features for data integration and network visualization
-
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-432. https://doi.org/10.1093/bioinformatics/btq675
-
(2011)
Bioinformatics
, vol.27
, pp. 431-432
-
-
Smoot, M.E.1
Ono, K.2
Ruscheinski, J.3
Wang, P.L.4
Ideker, T.5
|