-
1
-
-
0036242411
-
Evolutionary computational methods to predict oral bioavailability QSPRs
-
1:CAS:528:DC%2BD38XitF2hu7g%3D
-
Bains W, Gilbert R, Sviridenko L, Gascon JM, Scoffin R, Birchall K, Harvey I, Caldwell J (2002) Evolutionary computational methods to predict oral bioavailability QSPRs. Curr Opin Drug Discov Dev 5:44-51
-
(2002)
Curr Opin Drug Discov Dev
, vol.5
, pp. 44-51
-
-
Bains, W.1
Gilbert, R.2
Sviridenko, L.3
Gascon, J.M.4
Scoffin, R.5
Birchall, K.6
Harvey, I.7
Caldwell, J.8
-
2
-
-
0035353708
-
Quantitative structure-property relationships (QSPRs) for the estimation of vapor pressure: A hierarchical approach using mathematical structural descriptors
-
1:CAS:528:DC%2BD3MXisFemtro%3D
-
Basak SC, Mills D (2001) Quantitative structure-property relationships (QSPRs) for the estimation of vapor pressure: a hierarchical approach using mathematical structural descriptors. J Chem Inf Model 41:692-701
-
(2001)
J Chem Inf Model
, vol.41
, pp. 692-701
-
-
Basak, S.C.1
Mills, D.2
-
3
-
-
84861059886
-
Quantitative structure-property relationship modeling of diverse materials properties
-
1:CAS:528:DC%2BC38XpsVyisA%3D%3D
-
Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev 112:2889-2919
-
(2012)
Chem Rev
, vol.112
, pp. 2889-2919
-
-
Le, T.1
Epa, V.C.2
Burden, F.R.3
Winkler, D.A.4
-
4
-
-
85073163871
-
Quantitative structure-activity relationships (QSARs) - Applications and methodology
-
Puzyn T, Leszczynski J, Cronin MT Springer
-
Cronin MTD (2010) Quantitative structure-activity relationships (QSARs) - applications and methodology. In: Puzyn T, Leszczynski J, Cronin MT (eds) Recent advances in QSAR studies methods and applications. Springer, pp 3-11
-
(2010)
Recent Advances in QSAR Studies Methods and Applications
, pp. 3-11
-
-
Cronin, M.T.D.1
-
5
-
-
84862777215
-
(Q)SAR modeling and safety assessment in regulatory review
-
1:CAS:528:DC%2BC38XisFWgu7w%3D
-
Kruhlak NL, Benz RD, Zhou H, Colatsky TJ (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91:529-534
-
(2012)
Clin Pharmacol Ther
, vol.91
, pp. 529-534
-
-
Kruhlak, N.L.1
Benz, R.D.2
Zhou, H.3
Colatsky, T.J.4
-
6
-
-
73749087528
-
Computational toxicology - A tool for early safety evaluation
-
1:CAS:528:DC%2BC3cXnsV2itg%3D%3D
-
Merlot C (2010) Computational toxicology - a tool for early safety evaluation. Drug Discov Today 15:16-22
-
(2010)
Drug Discov Today
, vol.15
, pp. 16-22
-
-
Merlot, C.1
-
7
-
-
81055140589
-
From in silico target prediction to multi-target drug design: Current databases, methods and applications
-
1:CAS:528:DC%2BC3MXhsVOjtrfE
-
Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 74:2554-2574
-
(2011)
J Proteomics
, vol.74
, pp. 2554-2574
-
-
Koutsoukas, A.1
Simms, B.2
Kirchmair, J.3
Bond, P.J.4
Whitmore, A.V.5
Zimmer, S.6
Young, M.P.7
Jenkins, J.L.8
Glick, M.9
Glen, R.C.10
Bender, A.11
-
8
-
-
16544393180
-
Neural networks as robust tools in drug lead discovery and development
-
Winkler DA (2004) Neural networks as robust tools in drug lead discovery and development. Mol Biotechnol 27:139-168
-
(2004)
Mol Biotechnol
, vol.27
, pp. 139-168
-
-
Winkler, D.A.1
-
9
-
-
0036827084
-
QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks
-
1:CAS:528:DC%2BD38XntVKms7Y%3D
-
Mosier PD, Jurs PC (2002) QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J Chem Inf Model 42:1460-1470
-
(2002)
J Chem Inf Model
, vol.42
, pp. 1460-1470
-
-
Mosier, P.D.1
Jurs, P.C.2
-
10
-
-
0033549850
-
Robust QSAR models using Bayesian regularized neural networks
-
1:CAS:528:DyaK1MXksFGhsro%3D
-
Burden FR (1999) Robust QSAR models using bayesian regularized neural networks. J Med Chem 42:3183-3187
-
(1999)
J Med Chem
, vol.42
, pp. 3183-3187
-
-
Burden, F.R.1
-
11
-
-
0032061266
-
Aqueous solubility prediction of drugs based on molecular topology and neural network modeling
-
1:CAS:528:DyaK1cXis1yrtLY%3D
-
Huuskonen J, Salo M, Taskinen J (1998) Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 38:450-456
-
(1998)
J Chem Inf Comput Sci
, vol.38
, pp. 450-456
-
-
Huuskonen, J.1
Salo, M.2
Taskinen, J.3
-
12
-
-
0002483594
-
Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
-
1:CAS:528:DyaK1cXntl2ksbs%3D
-
Lucic B, Trinajstic N (1999) Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Model 39:121-132
-
(1999)
J Chem Inf Model
, vol.39
, pp. 121-132
-
-
Lucic, B.1
Trinajstic, N.2
-
13
-
-
0037424611
-
Artificial neural networks and genetic algorithms in QSAR
-
1:CAS:528:DC%2BD3sXhsVSrurc%3D
-
Niculescu SP (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct (Thoechem) 622:71-83
-
(2003)
J Mol Struct (Thoechem)
, vol.622
, pp. 71-83
-
-
Niculescu, S.P.1
-
14
-
-
0036628567
-
On the use of neural network ensembles in QSAR and QSPR
-
1:CAS:528:DC%2BD38Xjslyjurs%3D
-
Agrafiotis DK, Cedeno W, Lobanov VS (2002) On the use of neural network ensembles in QSAR and QSPR. J Chem Inf Model 42:903-911
-
(2002)
J Chem Inf Model
, vol.42
, pp. 903-911
-
-
Agrafiotis, D.K.1
Cedeno, W.2
Lobanov, V.S.3
-
15
-
-
20444409456
-
Interpreting computational neural network QSAR models: A measure of descriptor importance
-
1:CAS:528:DC%2BD2MXisleqs7k%3D
-
Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800-806
-
(2005)
J Chem Inf Model
, vol.45
, pp. 800-806
-
-
Guha, R.1
Jurs, P.C.2
-
16
-
-
0032735695
-
Neural networks in drug discovery: Have they lived up to their promise?
-
1:CAS:528:DyaK1MXjtFCjsr0%3D
-
Manallack DT, Livingstone DJ (1999) Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem 34:195-208
-
(1999)
Eur J Med Chem
, vol.34
, pp. 195-208
-
-
Manallack, D.T.1
Livingstone, D.J.2
-
17
-
-
0033970811
-
Neural networks are useful tools for drug design
-
1:STN:280:DC%2BD3cvhtFGmsQ%3D%3D
-
Schneider G (2000) Neural networks are useful tools for drug design. Neural Netw 13:15-16
-
(2000)
Neural Netw
, vol.13
, pp. 15-16
-
-
Schneider, G.1
-
18
-
-
84954372459
-
Deep learning in drug discovery
-
1:CAS:528:DC%2BC2MXitV2rs7bE
-
Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3-14
-
(2016)
Mol Inform
, vol.35
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
19
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
1:CAS:528:DC%2BC2MXhvFGns70%3D
-
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263-274
-
(2015)
J Chem Inf Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
21
-
-
77958488310
-
Deep machine learning - A new frontier in artificial intelligence research [research frontier]
-
Arel I, Rose DC, Karnowski TP (2010) Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5:13-18
-
(2010)
IEEE Comput Intell Mag
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
22
-
-
84930630277
-
Deep learning
-
1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
24
-
-
85162069624
-
Phone recognition with the mean-covariance restricted Boltzmann machine
-
Dahl G, Mohamed A-R, Hinton GE (2010) Phone recognition with the mean-covariance restricted Boltzmann machine. Adv Neural Inf Process Syst 2010:469-477
-
(2010)
Adv Neural Inf Process Syst
, vol.2010
, pp. 469-477
-
-
Dahl, G.1
Mohamed, A.-R.2
Hinton, G.E.3
-
26
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
Cireşan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big, simple neural nets for handwritten digit recognition. Neural Comput 22:3207-3220
-
(2010)
Neural Comput
, vol.22
, pp. 3207-3220
-
-
Cireşan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
27
-
-
0034564603
-
Artificial neural networks: Fundamentals, computing, design, and application
-
1:STN:280:DC%2BD3M%2FntlKltw%3D%3D
-
Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3-31
-
(2000)
J Microbiol Methods
, vol.43
, pp. 3-31
-
-
Basheer, I.A.1
Hajmeer, M.2
-
28
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115-133
-
(1943)
Bull Math Biophys
, vol.5
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
30
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533-536
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
31
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929-1958
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
32
-
-
49049088756
-
GPU computing
-
Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing. Proc IEEE 96:879-899
-
(2008)
Proc IEEE
, vol.96
, pp. 879-899
-
-
Owens, J.D.1
Houston, M.2
Luebke, D.3
Green, S.4
Stone, J.E.5
Phillips, J.C.6
-
33
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
1:CAS:528:DC%2BC3sXpvVGht7g%3D
-
Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563-1575
-
(2013)
J Chem Inf Model
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
34
-
-
84945557463
-
Deep learning for drug-induced liver injury
-
1:CAS:528:DC%2BC2MXhs1ShsLvO
-
Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L (2015) Deep learning for drug-induced liver injury. J Chem Inf Model 55:2085-2093
-
(2015)
J Chem Inf Model
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
35
-
-
84979019529
-
Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
-
1:CAS:528:DC%2BC28Xot1ers7w%3D
-
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 13:2524-2530
-
(2016)
Mol Pharm
, vol.13
, pp. 2524-2530
-
-
Aliper, A.1
Plis, S.2
Artemov, A.3
Ulloa, A.4
Mamoshina, P.5
Zhavoronkov, A.6
-
36
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
Quebec
-
Aspuru-Guzik A, Duvenaud D, Maclaurin D, Aguilera-Iparraguire J, Gomez-Bombarelli R, Hirzel TD, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of neural information processing systems, Quebec, pp 2224-2232
-
(2015)
Proceedings of Neural Information Processing Systems
, pp. 2224-2232
-
-
Aspuru-Guzik, A.1
Duvenaud, D.2
Maclaurin, D.3
Aguilera-Iparraguire, J.4
Gomez-Bombarelli, R.5
Hirzel, T.D.6
Adams, R.P.7
-
37
-
-
84979557463
-
-
arXiv preprint arXiv:1605.02688
-
Team TTD, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov A (2016) Theano: a Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688
-
(2016)
Theano: A Python Framework for Fast Computation of Mathematical Expressions
-
-
Team, T.T.D.1
Al-Rfou, R.2
Alain, G.3
Almahairi, A.4
Angermueller, C.5
Bahdanau, D.6
Ballas, N.7
Bastien, F.8
Bayer, J.9
Belikov, A.10
-
38
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM international conference on multimedia, 2014. ACM, pp 675-678
-
(2014)
Proceedings of the ACM International Conference on Multimedia, 2014
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
39
-
-
84890471125
-
On rectified linear units for speech processing
-
Vancouver
-
Zeiler MD, Ranzato M, Monga R, Mao M, Yang K, Le QV, Nguyen P, Senior A, Vanhoucke V, Dean J, Hinton GE (2013) On rectified linear units for speech processing. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, Vancouver, pp 3517-3521
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 3517-3521
-
-
Zeiler, M.D.1
Ranzato, M.2
Monga, R.3
Mao, M.4
Yang, K.5
Le, Q.V.6
Nguyen, P.7
Senior, A.8
Vanhoucke, V.9
Dean, J.10
Hinton, G.E.11
-
40
-
-
84857570176
-
Analysis of commercial and public bioactivity databases
-
1:CAS:528:DC%2BC3MXhsFOjtrjP
-
Tiikkainen P, Franke L (2012) Analysis of commercial and public bioactivity databases. J Chem Inf Model 52:319-326
-
(2012)
J Chem Inf Model
, vol.52
, pp. 319-326
-
-
Tiikkainen, P.1
Franke, L.2
-
41
-
-
84863531180
-
Towards a gold standard: Regarding quality in public domain chemistry databases and approaches to improving the situation
-
1:CAS:528:DC%2BC38XksFensL4%3D
-
Williams AJ, Ekins S, Tkachenko V (2012) Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today 17:685-701
-
(2012)
Drug Discov Today
, vol.17
, pp. 685-701
-
-
Williams, A.J.1
Ekins, S.2
Tkachenko, V.3
-
42
-
-
84862276184
-
The experimental uncertainty of heterogeneous PublicKiData
-
1:CAS:528:DC%2BC38XnsF2gtLY%3D
-
Kramer C, Kalliokoski T, Gedeck P, Vulpetti A (2012) The experimental uncertainty of heterogeneous PublicKiData. J Med Chem 55:5165-5173
-
(2012)
J Med Chem
, vol.55
, pp. 5165-5173
-
-
Kramer, C.1
Kalliokoski, T.2
Gedeck, P.3
Vulpetti, A.4
-
43
-
-
84982813794
-
A comprehensive company database analysis of biological assay variability
-
Kramer C, Dahl G, Tyrchan C, Ulander J (2016) A comprehensive company database analysis of biological assay variability. Drug Discov Today 21:1213-1221
-
(2016)
Drug Discov Today
, vol.21
, pp. 1213-1221
-
-
Kramer, C.1
Dahl, G.2
Tyrchan, C.3
Ulander, J.4
-
44
-
-
4544350863
-
Enrichment of extremely noisy high-throughput screening data using a Naive Bayes classifier
-
1:CAS:528:DC%2BD2cXitlOntrc%3D
-
Glick M (2004) Enrichment of extremely noisy high-throughput screening data using a Naive Bayes classifier. J Biomol Screen 9:32-36
-
(2004)
J Biomol Screen
, vol.9
, pp. 32-36
-
-
Glick, M.1
-
45
-
-
56049095031
-
On the interpretation and interpretability of quantitative structure-activity relationship models
-
1:CAS:528:DC%2BD1cXhtlags7bN
-
Guha R (2008) On the interpretation and interpretability of quantitative structure-activity relationship models. J Comput Aided Mol Des 22:857-871
-
(2008)
J Comput Aided Mol des
, vol.22
, pp. 857-871
-
-
Guha, R.1
-
46
-
-
72949101619
-
Interpretation of nonlinear QSAR models applied to AMES mutagenicity data
-
1:CAS:528:DC%2BD1MXht1GgsbnF
-
Carlsson L, Helgee EA, Boyer S (2009) Interpretation of nonlinear QSAR models applied to AMES mutagenicity data. J Chem Inf Model 49:2551-2558
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2551-2558
-
-
Carlsson, L.1
Helgee, E.A.2
Boyer, S.3
-
47
-
-
84857624995
-
Interpreting linear support vector machine models with heat map molecule coloring
-
1:CAS:528:DC%2BC3MXksF2ju7Y%3D
-
Rosenbaum L, Hinselmann G, Jahn A, Zell A (2011) Interpreting linear support vector machine models with heat map molecule coloring. J Cheminform 3:11
-
(2011)
J Cheminform
, vol.3
, pp. 11
-
-
Rosenbaum, L.1
Hinselmann, G.2
Jahn, A.3
Zell, A.4
-
48
-
-
84891762026
-
The ChEMBL bioactivity database: An update
-
1:CAS:528:DC%2BC2cXoslWl
-
Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083-D1090
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D1083-D1090
-
-
Bento, A.P.1
Gaulton, A.2
Hersey, A.3
Bellis, L.J.4
Chambers, J.5
Davies, M.6
Krüger, F.A.7
Light, Y.8
Mak, L.9
McGlinchey, S.10
Nowotka, M.11
Papadatos, G.12
Santos, R.13
Overington, J.P.14
-
49
-
-
84862192766
-
ChEMBL: A large-scale bioactivity database for drug discovery
-
Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100-D1107
-
(2011)
Nucleic Acids Res
, vol.40
, pp. D1100-D1107
-
-
Gaulton, A.1
Bellis, L.J.2
Bento, A.P.3
Chambers, J.4
Davies, M.5
Hersey, A.6
Light, Y.7
McGlinchey, S.8
Michalovich, D.9
Al-Lazikani, B.10
Overington, J.P.11
-
50
-
-
85007465550
-
-
Molecular Operating Environment (MOE) 2013.08 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7
-
Molecular Operating Environment (MOE) 2013.08. Chemical Computing Group Inc.: Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016
-
(2016)
Chemical Computing Group Inc
-
-
-
51
-
-
77952772341
-
Extended-connectivity fingerprints
-
1:CAS:528:DC%2BC3cXlt1Onsbg%3D
-
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742-754
-
(2010)
J Chem Inf Model
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
53
-
-
61949166066
-
How similar are similarity searching methods? A principal component analysis of molecular descriptor space
-
1:CAS:528:DC%2BD1MXisVahtQ%3D%3D
-
Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108-119
-
(2009)
J Chem Inf Model
, vol.49
, pp. 108-119
-
-
Bender, A.1
Jenkins, J.L.2
Scheiber, J.3
Sukuru, S.C.K.4
Glick, M.5
Davies, J.W.6
-
55
-
-
84957069091
-
Naive (Bayes) at forty: The independence assumption in information retrieval
-
C. Nédellec C. Rouveirol (eds) Lecture notes in computer science 1398 Springer Berlin, Heidelberg
-
Lewis DD (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. In: Nédellec C, Rouveirol C (eds) Machine learning: ECML-98. ECML 1998. Lecture notes in computer science, vol 1398. Springer, Berlin, Heidelberg, pp 4-15
-
(1998)
Machine Learning: ECML-98. ECML 1998
, pp. 4-15
-
-
Lewis, D.D.1
-
56
-
-
59549087165
-
On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes
-
Jordan A (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv Neural Inf Process Syst 14:841
-
(2002)
Adv Neural Inf Process Syst
, vol.14
, pp. 841
-
-
Jordan, A.1
-
57
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825-2830
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
58
-
-
0000581356
-
An introduction to kernel and nearest-neighbor nonparametric regression
-
Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175-185
-
(1992)
Am Stat
, vol.46
, pp. 175-185
-
-
Altman, N.S.1
-
59
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
1:CAS:528:DC%2BD3sXos1Wiu7s%3D
-
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Model 43:1947-1958
-
(2003)
J Chem Inf Model
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
60
-
-
0035478854
-
Random forests
-
Breiman L (2001) Random forests. Mach Learn 45:5-32
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
61
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
1:CAS:528:DC%2BD2sXht1ejtr7L
-
Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507-2517
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
62
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinform 7:3
-
(2006)
BMC Bioinform
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez De Andrés, S.2
-
63
-
-
84904993806
-
Machine learning methods in chemoinformatics
-
1:CAS:528:DC%2BC2cXht1ans77J
-
Mitchell JBO (2014) Machine learning methods in chemoinformatics. Wiley Interdiscipl Rev Comput Mol Sci 4:468-481
-
(2014)
Wiley Interdiscipl Rev Comput Mol Sci
, vol.4
, pp. 468-481
-
-
Mitchell, J.B.O.1
-
64
-
-
84860389751
-
Advances in the application of machine learning techniques in drug discovery
-
Barrett SJ, Langdon WB (2006) Advances in the application of machine learning techniques in drug discovery. Des Dev 36:99-110
-
(2006)
Des Dev
, vol.36
, pp. 99-110
-
-
Barrett, S.J.1
Langdon, W.B.2
-
65
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
67
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871-1874
-
(2008)
J Mach Learn Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
68
-
-
84912127533
-
Benchmarking study of parameter variation when using signature fingerprints together with support vector machines
-
1:CAS:528:DC%2BC2cXhslGgt7vI
-
Alvarsson J, Eklund M, Andersson C, Carlsson L, Spjuth O, Wikberg JE (2014) Benchmarking study of parameter variation when using signature fingerprints together with support vector machines. J Chem Inf Model 54:3211-3217
-
(2014)
J Chem Inf Model
, vol.54
, pp. 3211-3217
-
-
Alvarsson, J.1
Eklund, M.2
Andersson, C.3
Carlsson, L.4
Spjuth, O.5
Wikberg, J.E.6
-
71
-
-
0016772212
-
Comparison of the predicted and observed secondary structure of T4 phage lysozyme
-
1:CAS:528:DyaE2MXlslCksbk%3D
-
Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) Protein Struct 405:442-451
-
(1975)
Biochim Biophys Acta (BBA) Protein Struct
, vol.405
, pp. 442-451
-
-
Matthews, B.W.1
-
72
-
-
0033931867
-
Assessing the accuracy of prediction algorithms for classification: An overview
-
1:CAS:528:DC%2BD3cXlvVKqt74%3D
-
Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412-424
-
(2000)
Bioinformatics
, vol.16
, pp. 412-424
-
-
Baldi, P.1
Brunak, S.2
Chauvin, Y.3
Andersen, C.A.F.4
Nielsen, H.5
-
73
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80
-
(1945)
Biom Bull
, vol.1
, pp. 80
-
-
Wilcoxon, F.1
-
74
-
-
85021424511
-
-
Team RC (2014) In: ISBN 3-900051-07-0
-
Team RC (2014) In: ISBN 3-900051-07-0
-
-
-
|