메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages

Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data

Author keywords

Cheminformatics; Data mining; Deep learning; kNN; Machine learning; Na ve Bayes; Random forest; SARs; Support vector machines

Indexed keywords


EID: 85021424291     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/s13321-017-0226-y     Document Type: Article
Times cited : (257)

References (74)
  • 2
    • 0035353708 scopus 로고    scopus 로고
    • Quantitative structure-property relationships (QSPRs) for the estimation of vapor pressure: A hierarchical approach using mathematical structural descriptors
    • 1:CAS:528:DC%2BD3MXisFemtro%3D
    • Basak SC, Mills D (2001) Quantitative structure-property relationships (QSPRs) for the estimation of vapor pressure: a hierarchical approach using mathematical structural descriptors. J Chem Inf Model 41:692-701
    • (2001) J Chem Inf Model , vol.41 , pp. 692-701
    • Basak, S.C.1    Mills, D.2
  • 3
    • 84861059886 scopus 로고    scopus 로고
    • Quantitative structure-property relationship modeling of diverse materials properties
    • 1:CAS:528:DC%2BC38XpsVyisA%3D%3D
    • Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev 112:2889-2919
    • (2012) Chem Rev , vol.112 , pp. 2889-2919
    • Le, T.1    Epa, V.C.2    Burden, F.R.3    Winkler, D.A.4
  • 4
    • 85073163871 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships (QSARs) - Applications and methodology
    • Puzyn T, Leszczynski J, Cronin MT Springer
    • Cronin MTD (2010) Quantitative structure-activity relationships (QSARs) - applications and methodology. In: Puzyn T, Leszczynski J, Cronin MT (eds) Recent advances in QSAR studies methods and applications. Springer, pp 3-11
    • (2010) Recent Advances in QSAR Studies Methods and Applications , pp. 3-11
    • Cronin, M.T.D.1
  • 5
    • 84862777215 scopus 로고    scopus 로고
    • (Q)SAR modeling and safety assessment in regulatory review
    • 1:CAS:528:DC%2BC38XisFWgu7w%3D
    • Kruhlak NL, Benz RD, Zhou H, Colatsky TJ (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91:529-534
    • (2012) Clin Pharmacol Ther , vol.91 , pp. 529-534
    • Kruhlak, N.L.1    Benz, R.D.2    Zhou, H.3    Colatsky, T.J.4
  • 6
    • 73749087528 scopus 로고    scopus 로고
    • Computational toxicology - A tool for early safety evaluation
    • 1:CAS:528:DC%2BC3cXnsV2itg%3D%3D
    • Merlot C (2010) Computational toxicology - a tool for early safety evaluation. Drug Discov Today 15:16-22
    • (2010) Drug Discov Today , vol.15 , pp. 16-22
    • Merlot, C.1
  • 8
    • 16544393180 scopus 로고    scopus 로고
    • Neural networks as robust tools in drug lead discovery and development
    • Winkler DA (2004) Neural networks as robust tools in drug lead discovery and development. Mol Biotechnol 27:139-168
    • (2004) Mol Biotechnol , vol.27 , pp. 139-168
    • Winkler, D.A.1
  • 9
    • 0036827084 scopus 로고    scopus 로고
    • QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks
    • 1:CAS:528:DC%2BD38XntVKms7Y%3D
    • Mosier PD, Jurs PC (2002) QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J Chem Inf Model 42:1460-1470
    • (2002) J Chem Inf Model , vol.42 , pp. 1460-1470
    • Mosier, P.D.1    Jurs, P.C.2
  • 10
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • 1:CAS:528:DyaK1MXksFGhsro%3D
    • Burden FR (1999) Robust QSAR models using bayesian regularized neural networks. J Med Chem 42:3183-3187
    • (1999) J Med Chem , vol.42 , pp. 3183-3187
    • Burden, F.R.1
  • 11
    • 0032061266 scopus 로고    scopus 로고
    • Aqueous solubility prediction of drugs based on molecular topology and neural network modeling
    • 1:CAS:528:DyaK1cXis1yrtLY%3D
    • Huuskonen J, Salo M, Taskinen J (1998) Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 38:450-456
    • (1998) J Chem Inf Comput Sci , vol.38 , pp. 450-456
    • Huuskonen, J.1    Salo, M.2    Taskinen, J.3
  • 12
    • 0002483594 scopus 로고    scopus 로고
    • Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
    • 1:CAS:528:DyaK1cXntl2ksbs%3D
    • Lucic B, Trinajstic N (1999) Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Model 39:121-132
    • (1999) J Chem Inf Model , vol.39 , pp. 121-132
    • Lucic, B.1    Trinajstic, N.2
  • 13
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • 1:CAS:528:DC%2BD3sXhsVSrurc%3D
    • Niculescu SP (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct (Thoechem) 622:71-83
    • (2003) J Mol Struct (Thoechem) , vol.622 , pp. 71-83
    • Niculescu, S.P.1
  • 14
    • 0036628567 scopus 로고    scopus 로고
    • On the use of neural network ensembles in QSAR and QSPR
    • 1:CAS:528:DC%2BD38Xjslyjurs%3D
    • Agrafiotis DK, Cedeno W, Lobanov VS (2002) On the use of neural network ensembles in QSAR and QSPR. J Chem Inf Model 42:903-911
    • (2002) J Chem Inf Model , vol.42 , pp. 903-911
    • Agrafiotis, D.K.1    Cedeno, W.2    Lobanov, V.S.3
  • 15
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • 1:CAS:528:DC%2BD2MXisleqs7k%3D
    • Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800-806
    • (2005) J Chem Inf Model , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 16
    • 0032735695 scopus 로고    scopus 로고
    • Neural networks in drug discovery: Have they lived up to their promise?
    • 1:CAS:528:DyaK1MXjtFCjsr0%3D
    • Manallack DT, Livingstone DJ (1999) Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem 34:195-208
    • (1999) Eur J Med Chem , vol.34 , pp. 195-208
    • Manallack, D.T.1    Livingstone, D.J.2
  • 17
    • 0033970811 scopus 로고    scopus 로고
    • Neural networks are useful tools for drug design
    • 1:STN:280:DC%2BD3cvhtFGmsQ%3D%3D
    • Schneider G (2000) Neural networks are useful tools for drug design. Neural Netw 13:15-16
    • (2000) Neural Netw , vol.13 , pp. 15-16
    • Schneider, G.1
  • 18
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • 1:CAS:528:DC%2BC2MXitV2rs7bE
    • Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3-14
    • (2016) Mol Inform , vol.35 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 19
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • 1:CAS:528:DC%2BC2MXhvFGns70%3D
    • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263-274
    • (2015) J Chem Inf Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 21
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning - A new frontier in artificial intelligence research [research frontier]
    • Arel I, Rose DC, Karnowski TP (2010) Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5:13-18
    • (2010) IEEE Comput Intell Mag , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • 1:CAS:528:DC%2BC2MXht1WlurzP
    • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 24
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted Boltzmann machine
    • Dahl G, Mohamed A-R, Hinton GE (2010) Phone recognition with the mean-covariance restricted Boltzmann machine. Adv Neural Inf Process Syst 2010:469-477
    • (2010) Adv Neural Inf Process Syst , vol.2010 , pp. 469-477
    • Dahl, G.1    Mohamed, A.-R.2    Hinton, G.E.3
  • 27
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • 1:STN:280:DC%2BD3M%2FntlKltw%3D%3D
    • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3-31
    • (2000) J Microbiol Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 28
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115-133
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • 1:CAS:528:DC%2BC3sXpvVGht7g%3D
    • Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563-1575
    • (2013) J Chem Inf Model , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 34
    • 84945557463 scopus 로고    scopus 로고
    • Deep learning for drug-induced liver injury
    • 1:CAS:528:DC%2BC2MXhs1ShsLvO
    • Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L (2015) Deep learning for drug-induced liver injury. J Chem Inf Model 55:2085-2093
    • (2015) J Chem Inf Model , vol.55 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 35
    • 84979019529 scopus 로고    scopus 로고
    • Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
    • 1:CAS:528:DC%2BC28Xot1ers7w%3D
    • Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 13:2524-2530
    • (2016) Mol Pharm , vol.13 , pp. 2524-2530
    • Aliper, A.1    Plis, S.2    Artemov, A.3    Ulloa, A.4    Mamoshina, P.5    Zhavoronkov, A.6
  • 40
    • 84857570176 scopus 로고    scopus 로고
    • Analysis of commercial and public bioactivity databases
    • 1:CAS:528:DC%2BC3MXhsFOjtrjP
    • Tiikkainen P, Franke L (2012) Analysis of commercial and public bioactivity databases. J Chem Inf Model 52:319-326
    • (2012) J Chem Inf Model , vol.52 , pp. 319-326
    • Tiikkainen, P.1    Franke, L.2
  • 41
    • 84863531180 scopus 로고    scopus 로고
    • Towards a gold standard: Regarding quality in public domain chemistry databases and approaches to improving the situation
    • 1:CAS:528:DC%2BC38XksFensL4%3D
    • Williams AJ, Ekins S, Tkachenko V (2012) Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today 17:685-701
    • (2012) Drug Discov Today , vol.17 , pp. 685-701
    • Williams, A.J.1    Ekins, S.2    Tkachenko, V.3
  • 42
    • 84862276184 scopus 로고    scopus 로고
    • The experimental uncertainty of heterogeneous PublicKiData
    • 1:CAS:528:DC%2BC38XnsF2gtLY%3D
    • Kramer C, Kalliokoski T, Gedeck P, Vulpetti A (2012) The experimental uncertainty of heterogeneous PublicKiData. J Med Chem 55:5165-5173
    • (2012) J Med Chem , vol.55 , pp. 5165-5173
    • Kramer, C.1    Kalliokoski, T.2    Gedeck, P.3    Vulpetti, A.4
  • 43
    • 84982813794 scopus 로고    scopus 로고
    • A comprehensive company database analysis of biological assay variability
    • Kramer C, Dahl G, Tyrchan C, Ulander J (2016) A comprehensive company database analysis of biological assay variability. Drug Discov Today 21:1213-1221
    • (2016) Drug Discov Today , vol.21 , pp. 1213-1221
    • Kramer, C.1    Dahl, G.2    Tyrchan, C.3    Ulander, J.4
  • 44
    • 4544350863 scopus 로고    scopus 로고
    • Enrichment of extremely noisy high-throughput screening data using a Naive Bayes classifier
    • 1:CAS:528:DC%2BD2cXitlOntrc%3D
    • Glick M (2004) Enrichment of extremely noisy high-throughput screening data using a Naive Bayes classifier. J Biomol Screen 9:32-36
    • (2004) J Biomol Screen , vol.9 , pp. 32-36
    • Glick, M.1
  • 45
    • 56049095031 scopus 로고    scopus 로고
    • On the interpretation and interpretability of quantitative structure-activity relationship models
    • 1:CAS:528:DC%2BD1cXhtlags7bN
    • Guha R (2008) On the interpretation and interpretability of quantitative structure-activity relationship models. J Comput Aided Mol Des 22:857-871
    • (2008) J Comput Aided Mol des , vol.22 , pp. 857-871
    • Guha, R.1
  • 46
    • 72949101619 scopus 로고    scopus 로고
    • Interpretation of nonlinear QSAR models applied to AMES mutagenicity data
    • 1:CAS:528:DC%2BD1MXht1GgsbnF
    • Carlsson L, Helgee EA, Boyer S (2009) Interpretation of nonlinear QSAR models applied to AMES mutagenicity data. J Chem Inf Model 49:2551-2558
    • (2009) J Chem Inf Model , vol.49 , pp. 2551-2558
    • Carlsson, L.1    Helgee, E.A.2    Boyer, S.3
  • 47
    • 84857624995 scopus 로고    scopus 로고
    • Interpreting linear support vector machine models with heat map molecule coloring
    • 1:CAS:528:DC%2BC3MXksF2ju7Y%3D
    • Rosenbaum L, Hinselmann G, Jahn A, Zell A (2011) Interpreting linear support vector machine models with heat map molecule coloring. J Cheminform 3:11
    • (2011) J Cheminform , vol.3 , pp. 11
    • Rosenbaum, L.1    Hinselmann, G.2    Jahn, A.3    Zell, A.4
  • 50
    • 85007465550 scopus 로고    scopus 로고
    • Molecular Operating Environment (MOE) 2013.08 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7
    • Molecular Operating Environment (MOE) 2013.08. Chemical Computing Group Inc.: Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016
    • (2016) Chemical Computing Group Inc
  • 51
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • 1:CAS:528:DC%2BC3cXlt1Onsbg%3D
    • Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742-754
    • (2010) J Chem Inf Model , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 53
    • 61949166066 scopus 로고    scopus 로고
    • How similar are similarity searching methods? A principal component analysis of molecular descriptor space
    • 1:CAS:528:DC%2BD1MXisVahtQ%3D%3D
    • Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108-119
    • (2009) J Chem Inf Model , vol.49 , pp. 108-119
    • Bender, A.1    Jenkins, J.L.2    Scheiber, J.3    Sukuru, S.C.K.4    Glick, M.5    Davies, J.W.6
  • 55
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • C. Nédellec C. Rouveirol (eds) Lecture notes in computer science 1398 Springer Berlin, Heidelberg
    • Lewis DD (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. In: Nédellec C, Rouveirol C (eds) Machine learning: ECML-98. ECML 1998. Lecture notes in computer science, vol 1398. Springer, Berlin, Heidelberg, pp 4-15
    • (1998) Machine Learning: ECML-98. ECML 1998 , pp. 4-15
    • Lewis, D.D.1
  • 56
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression and naive bayes
    • Jordan A (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv Neural Inf Process Syst 14:841
    • (2002) Adv Neural Inf Process Syst , vol.14 , pp. 841
    • Jordan, A.1
  • 58
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175-185
    • (1992) Am Stat , vol.46 , pp. 175-185
    • Altman, N.S.1
  • 59
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • 1:CAS:528:DC%2BD3sXos1Wiu7s%3D
    • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Model 43:1947-1958
    • (2003) J Chem Inf Model , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 60
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5-32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 61
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 1:CAS:528:DC%2BD2sXht1ejtr7L
    • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507-2517
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 62
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinform 7:3
    • (2006) BMC Bioinform , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez De Andrés, S.2
  • 63
    • 84904993806 scopus 로고    scopus 로고
    • Machine learning methods in chemoinformatics
    • 1:CAS:528:DC%2BC2cXht1ans77J
    • Mitchell JBO (2014) Machine learning methods in chemoinformatics. Wiley Interdiscipl Rev Comput Mol Sci 4:468-481
    • (2014) Wiley Interdiscipl Rev Comput Mol Sci , vol.4 , pp. 468-481
    • Mitchell, J.B.O.1
  • 64
    • 84860389751 scopus 로고    scopus 로고
    • Advances in the application of machine learning techniques in drug discovery
    • Barrett SJ, Langdon WB (2006) Advances in the application of machine learning techniques in drug discovery. Des Dev 36:99-110
    • (2006) Des Dev , vol.36 , pp. 99-110
    • Barrett, S.J.1    Langdon, W.B.2
  • 65
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 68
    • 84912127533 scopus 로고    scopus 로고
    • Benchmarking study of parameter variation when using signature fingerprints together with support vector machines
    • 1:CAS:528:DC%2BC2cXhslGgt7vI
    • Alvarsson J, Eklund M, Andersson C, Carlsson L, Spjuth O, Wikberg JE (2014) Benchmarking study of parameter variation when using signature fingerprints together with support vector machines. J Chem Inf Model 54:3211-3217
    • (2014) J Chem Inf Model , vol.54 , pp. 3211-3217
    • Alvarsson, J.1    Eklund, M.2    Andersson, C.3    Carlsson, L.4    Spjuth, O.5    Wikberg, J.E.6
  • 71
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • 1:CAS:528:DyaE2MXlslCksbk%3D
    • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) Protein Struct 405:442-451
    • (1975) Biochim Biophys Acta (BBA) Protein Struct , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 72
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • 1:CAS:528:DC%2BD3cXlvVKqt74%3D
    • Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412-424
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.F.4    Nielsen, H.5
  • 73
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80
    • (1945) Biom Bull , vol.1 , pp. 80
    • Wilcoxon, F.1
  • 74
    • 85021424511 scopus 로고    scopus 로고
    • Team RC (2014) In: ISBN 3-900051-07-0
    • Team RC (2014) In: ISBN 3-900051-07-0


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.