메뉴 건너뛰기




Volumn 36, Issue , 2006, Pages 99-110

Advances in the application ofmachine learning techniques in drug discovery, design and development

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84860389751     PISSN: 16153871     EISSN: 18600794     Source Type: Book Series    
DOI: 10.1007/978-3-540-36266-1_10     Document Type: Conference Paper
Times cited : (34)

References (118)
  • 1
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • DOI 10.1021/jm0104668
    • Agrafiotis and Cedeno, 2002. Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45(5): 1098-1107. (Pubitemid 34173920)
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 3
    • 3543106611 scopus 로고    scopus 로고
    • Classification of gene expression profile using combinatory method of evolutionary computation and machine learning
    • DOI 10.1023/B:GENP.0000023685.83861.69
    • Ando and Iba, 2004. Classification of gene expression profile using combinatory method of evolutionary computation and machine learning. GP&EM, 5(2): 145-156. (Pubitemid 38497846)
    • (2004) Genetic Programming and Evolvable Machines , vol.5 , Issue.2 , pp. 145-156
    • Ando, S.1    Iba, H.2
  • 4
    • 18144369259 scopus 로고    scopus 로고
    • Development of CYP3A4 inhibition models: Comparisons of machine-learning techniques and molecular descriptors
    • DOI 10.1177/1087057104274091
    • Arimoto and Gifford, 2005. Development of CYP3A4 Inhibition Models: Comparisons of Machine-Learning Techniques and Molecular Descriptors. Journal of Biomolecular Screening, 10(3):197-205 (Pubitemid 40617157)
    • (2005) Journal of Biomolecular Screening , vol.10 , Issue.3 , pp. 197-205
    • Arimoto, R.1    Prasad, M.-A.2    Gifford, E.M.3
  • 5
    • 3543145510 scopus 로고    scopus 로고
    • HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study
    • DOI 10.1016/j.pbiomolbio.2003.09.001, PII S0079610703000804
    • Bains et al., 2004. HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study. Progress in Biophysics and Molecular Biology, 86(2):205-233. (Pubitemid 39027233)
    • (2004) Progress in Biophysics and Molecular Biology , vol.86 , Issue.2 , pp. 205-233
    • Bains, W.1    Basman, A.2    White, C.3
  • 7
    • 0037134796 scopus 로고    scopus 로고
    • Identifying genes related to drug anticancer mechanisms using support vector machine
    • DOI 10.1016/S0014-5793(02)02835-1, PII S0014579302028351
    • Bao and Sun, 2002. Identifying genes related to drug anticancer mechanisms using support vector machine. FEBS Lett. 521(1-3):109-14. (Pubitemid 34628469)
    • (2002) FEBS Letters , vol.521 , Issue.1-3 , pp. 109-114
    • Bao, L.1    Sun, Z.2
  • 8
    • 84860397575 scopus 로고    scopus 로고
    • INTErSECT "roCKET" : Robust classification and knowledge engineering techniques
    • Presented at, Centre for Advanced Instrumentation Systems, UCL, 16th February 2005
    • Barrett, SJ. (2005) INTErSECT "RoCKET" : Robust Classification and Knowledge Engineering Techniques. Presented at : 'Through Collaboration to Innovation', Centre for Advanced Instrumentation Systems, UCL, 16th February 2005.
    • (2005) Through Collaboration to Innovation
    • Barrett, S.J.1
  • 9
    • 3242892058 scopus 로고    scopus 로고
    • GPCRpred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors
    • DOI 10.1093/nar/gkh416
    • Bhasin and Raghava, 2004a. GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic acids research, 32:W383-W389 (Pubitemid 38997364)
    • (2004) Nucleic Acids Research , vol.32
    • Bhasin, M.1    Raghava, G.P.S.2
  • 10
    • 2542458612 scopus 로고    scopus 로고
    • Classification of nuclear receptors based on amino acid composition and dipeptide composition
    • DOI 10.1074/jbc.M401932200
    • Bhasin and Raghava, 2004b. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J. Biological Chemistry, 279(22):23262-23266 (Pubitemid 38685634)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.22 , pp. 23262-23266
    • Bhasin, M.1    Raghava, G.P.S.2
  • 12
    • 0037249217 scopus 로고    scopus 로고
    • Whole-proteome interaction mining
    • DOI 10.1093/bioinformatics/19.1.125
    • Bock and Gough, 2003. Whole-proteome interaction mining. Bioinformatics, 19 (1), 125-135. (Pubitemid 36150189)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 125-135
    • Bock, J.R.1    Gough, D.A.2
  • 13
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • COLT, 1992
    • Boser et al., 1992. A training algorithm for optimal margin classifiers. 5th Annual ACM Workshop, COLT, 1992
    • (1992) 5th Annual ACM Workshop
    • Boser1
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, 2001. Random forests. Machine Learning, 45:5-32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 84860397574 scopus 로고    scopus 로고
    • Caco-2 permeability modeling: Feature selection via sparse support vector machines
    • Presented at the, April 2002
    • Breneman 2002. Caco-2 Permeability Modeling: Feature Selection via Sparse Support Vector Machines.Presented at the ADMEffox symposium at the Orlando ACS meeting, April 2002.
    • (2002) ADMEffox Symposium at the Orlando ACS Meeting
    • Breneman1
  • 17
    • 84860421678 scopus 로고    scopus 로고
    • STAR Sparsity through automated rejection
    • Connectionist Models of Neurons, Learning Processes, Proceedings, Part 1 2084; Mira, 1.; Prieto, A., Eds.; Springer: Granada, Spain
    • Burbidge et al., 2001a. STAR Sparsity Through Automated Rejection. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence: 6th International Work Conference On Artificial and Natural Neural Networks, IWANN 2001, Proceedings, Part 1, Vol. 2084; Mira, 1.; Prieto, A., Eds.; Springer: Granada, Spain, 2001.
    • (2001) Artificial Intelligence 6th International Work Conference on Artificial and Natural Neural Networks, IWANN 2001 , pp. 2001
    • Burbidge1
  • 18
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge et al., 2001b. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers in chemistry, 26(1):4-15
    • (2001) Computers in Chemistry , vol.26 , Issue.1 , pp. 4-15
    • Burbidge1
  • 19
    • 0036884167 scopus 로고    scopus 로고
    • The use and analysis of microarray data
    • DOI 10.1038/nrd961
    • Butte, 2002. The use and analysis of microarray data. Nat. Rev. Drug Discov. 1(12):951-60 (Pubitemid 37361601)
    • (2002) Nature Reviews Drug Discovery , vol.1 , Issue.12 , pp. 951-960
    • Butte, A.1
  • 20
    • 2942702317 scopus 로고    scopus 로고
    • SVM-based feature selection for characterization of focused compound collections
    • Byvatov, and Schneider, 2004. SVM-Based Feature Selection for Characterization of Focused Compound Collections. J. Chern. Inf. Comput. Sci., 44(3): 993-999
    • (2004) J. Chern. Inf. Comput. Sci. , vol.44 , Issue.3 , pp. 993-999
    • Byvatov1    Schneider2
  • 21
    • 20444502203 scopus 로고    scopus 로고
    • 3 dopamine receptor ligands
    • DOI 10.1002/cbic.200400400
    • Byvatov et al., 2005a. From Virtual to Real Screening for D3 Dopamine Receptor Ligands. ChemBioChem, 6(6):997-999 (Pubitemid 40825338)
    • (2005) ChemBioChem , vol.6 , Issue.6 , pp. 997-999
    • Byvatov, E.1    Sasse, B.C.2    Stark, H.3    Schneider, G.4
  • 22
    • 0042856574 scopus 로고    scopus 로고
    • Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression
    • DOI 10.1023/A:1025338411016
    • Cedeno and Agrafiotis, 2003. Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. J.Comput.-Aided Mol. Des.,17:255-263. (Pubitemid 37062786)
    • (2003) Journal of Computer-Aided Molecular Design , vol.17 , Issue.2-4 , pp. 255-263
    • Cedeno, W.1    Agrafiotis, D.K.2
  • 24
    • 8844238362 scopus 로고    scopus 로고
    • Insight into the Bioactivity and Metabolism of Human Glucagon Receptor Antagonists from 3D-QSAR Analyses
    • Cheng et al., 2004. Insight into the Bioactivity and Metabolism of Human Glucagon Receptor Antagonists from 3D-QSAR Analyses. QSAR & Combinatorial Science, 23(8): 603-620
    • (2004) QSAR & Combinatorial Science , vol.23 , Issue.8 , pp. 603-620
    • Cheng1
  • 27
    • 0037255041 scopus 로고    scopus 로고
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction
    • DOI 10.1093/bioinformatics/19.1.45
    • Deutsch, 2003. Evolutionary algorithms for finding optimal gene sets in micro array prediction. Bioinformatics, 19(1):45-52. (Pubitemid 36157275)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 45-52
    • Deutsch, J.M.1
  • 28
    • 9644283060 scopus 로고    scopus 로고
    • Predicting enzyme class from protein structure without alignments
    • DOI 10.1016/j.jmb.2004.10.024, PII S0022283604013166
    • Dobson & Doig 2005.Predicting enzyme class from protein structure without alignments. J.Mol.Biol. ,345:187-199 (Pubitemid 39572835)
    • (2005) Journal of Molecular Biology , vol.345 , Issue.1 , pp. 187-199
    • Dobson, P.D.1    Doig, A.J.2
  • 29
    • 12244271454 scopus 로고    scopus 로고
    • Predicting CNS permeability of drug molecules: Comparison of neural network and support vector machine algorithms
    • DOI 10.1089/10665270260518317
    • Doniger et al., 2002. Predicting CNS Permeability of Drug Molecules: Comparison of Neural Network and Support Vector Machine Algorithms. J. of Computational Biol., 9(6): 849-864 (Pubitemid 36207918)
    • (2002) Journal of Computational Biology , vol.9 , Issue.6 , pp. 849-864
    • Doniger, S.1    Hofmann, T.2    Yeh, J.3
  • 30
    • 15244358006 scopus 로고    scopus 로고
    • Support vector machines for learning to identify the critical positions of a protein
    • DOI 10.1016/j.jtbi.2004.11.037
    • Dubey et al., 2005. Support vector machines for learning to identify the critical positions of a protein. Journal of Theoretical Biology, 234(3):351-361 (Pubitemid 40387460)
    • (2005) Journal of Theoretical Biology , vol.234 , Issue.3 , pp. 351-361
    • Dubey, A.1    Realff, M.J.2    Lee, J.H.3    Bommarius, A.S.4
  • 34
    • 11144286011 scopus 로고    scopus 로고
    • Selecting differentially expressed genes for colon tumor classification
    • Fujarewicz and Wiench, 2003. Selecting differentially expressed genes for colon tumor classification. Int. J. Appl. Math. Comput. Sci., 13(3):327-335
    • (2003) Int. J. Appl. Math. Comput. Sci. , vol.13 , Issue.3 , pp. 327-335
    • Fujarewicz1    Wiench2
  • 35
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classification
    • Fung and Mangasarian, 2004. A Feature Selection Newton Method for Support Vector Machine Classification. Computational Optimization and Applications 28(2):185-202
    • (2004) Computational Optimization and Applications , vol.28 , Issue.2 , pp. 185-202
    • Fung1    Mangasarian2
  • 36
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification of microarray data
    • Furlanello et al., 2003. Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics, 4:54-74.
    • (2003) BMC Bioinformatics , vol.4 , pp. 54-74
    • Furlanello1
  • 37
    • 17644419938 scopus 로고    scopus 로고
    • A novel statistical ligand-binding site predictor: Application to ATP-binding sites
    • DOI 10.1093/protein/gzi006
    • Guo et al., 2005. A novel statistical ligand-binding site predictor: application to ATP-binding sites. Protein Engng., Design & Selection, 18(2):65-70 (Pubitemid 40562554)
    • (2005) Protein Engineering, Design and Selection , vol.18 , Issue.2 , pp. 65-70
    • Guo, T.1    Shi, Y.2    Sun, Z.3
  • 38
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon et al., 2002. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389-422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 39
    • 0002415606 scopus 로고    scopus 로고
    • Statistics and data mining: Intersecting disciplines
    • Hand, 1999. Statistics and data mining: intersecting disciplines.SIGKDD Explorations, 1: 16-19
    • (1999) SIGKDD Explorations , vol.1 , pp. 16-19
    • Hand1
  • 40
    • 84860401361 scopus 로고    scopus 로고
    • Talk at Universite Rene Descartes UFR Biomedicale, Paris
    • Hardle and Moro, 2004. Survival Analysis with Support vector Machines. Talk at Universite Rene Descartes UFR Biomedicale, Paris http://appel.rz.hu- berlin.de/Zope/ise-stat/wiwi/ise/stat/personen/wh/talks/hae-mor-SVM- %20survival040324.pdf
    • (2004) Survival Analysis with Support Vector Machines
    • Hardle1    Moro2
  • 41
    • 35048847106 scopus 로고    scopus 로고
    • Evolving regular expression-based sequence classifiers for protein nuclear localisation
    • Raidl et al.eds., LNCS
    • Heddad et al., 2004. Evolving regular expression-based sequence classifiers for protein nuclear localisation.In: Raidl, et al.eds.,Applications of Evolutionary Computing,LNCS 3005, 31-40
    • (2004) Applications of Evolutionary Computing , vol.3005 , pp. 31-40
    • Heddad1
  • 43
    • 1642350394 scopus 로고    scopus 로고
    • Recent development and application of virtual screening in drug discovery: An overview
    • DOI 10.2174/1381612043452721
    • Hou and Xu, 2004. Recent development and application of virtual screening in drug discovery: an overview. Current Pharmaceutical Design, 10: 1011-1033 (Pubitemid 38380079)
    • (2004) Current Pharmaceutical Design , vol.10 , Issue.9 , pp. 1011-1033
    • Hou, T.1    Xu, X.2
  • 44
    • 0345724915 scopus 로고    scopus 로고
    • Evolutionary computation method for pattern recognition of cis-acting sites
    • DOI 10.1016/S0303-2647(03)00132-1
    • Howard and Benson, 2003. Evolutionary computation method for pattern recognition of cisacting sites. Biosystems, 72(1-2):19-27. (Pubitemid 37464787)
    • (2003) BioSystems , vol.72 , Issue.1-2 , pp. 19-27
    • Howard, D.1    Benson, K.2
  • 45
    • 29144521785 scopus 로고    scopus 로고
    • The genetic kernel support vector machine: Description and evaluation
    • to appear
    • Howley and Madden, 2005. The Genetic Kernel Support Vector Machine: Description and Evaluation". Artificial Intelligence Review, to appear.
    • (2005) Artificial Intelligence Review
    • Howley1    Madden2
  • 46
    • 18044391075 scopus 로고    scopus 로고
    • Support vector machines in sonography: Application to decision making in the diagnosis of breast cancer
    • DOI 10.1016/j.clinimag.2004.08.002
    • Huang and Chen, 2005. Support vector machines in sonography: Application to decision making in the diagnosis of breast cancer. Clinical Imaging, 29(3):179-184 (Pubitemid 40602801)
    • (2005) Clinical Imaging , vol.29 , Issue.3 , pp. 179-184
    • Huang, Y.-L.1    Chen, D.-R.2
  • 47
    • 24344435631 scopus 로고    scopus 로고
    • Multi-objective model selection for support vector machines
    • Evolutionary Multi-Criterion Optimization - Third International Conference, EMO 2005
    • Igel, 2005. Multiobjective Model Selection for Support Vector Machines. In C. A. Coello Coello, E. Zitzler, and A. Hernandez Aguirre, editors, Proc. of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS 3410: 534-546 (Pubitemid 41251788)
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 534-546
    • Igel, C.1
  • 48
    • 17044407594 scopus 로고    scopus 로고
    • Support vector machines committee classification method for computeraided polyp detection in CT colonography
    • Jerebko, et al., 2005. Support vector machines committee classification method for computeraided polyp detection in CT colonography. Acad. Radiol., 12(4): 479-486.
    • (2005) Acad. Radiol. , vol.12 , Issue.4 , pp. 479-486
    • Jerebko1
  • 49
    • 0037371953 scopus 로고    scopus 로고
    • Metabolic fingerprinting of salt-stressed tomatoes
    • DOI 10.1016/S0031-9422(02)00722-7
    • Johnson et al., 2003. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62(6): 919-928. (Pubitemid 36262395)
    • (2003) Phytochemistry , vol.62 , Issue.6 , pp. 919-928
    • Johnson, H.E.1    Broadhurst, D.2    Goodacre, R.3    Smith, A.R.4
  • 52
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • DOI 10.1021/ci049641u
    • Jorissen and Gilson, 2005. Virtual Screening of Molecular Databases Using a Support Vector Machine. J. Chern. Inf. Model, 45(3): 549-561 (Pubitemid 40795161)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.3 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 53
    • 0002159118 scopus 로고    scopus 로고
    • Defence against the flood
    • Kell, 2002. Defence against the flood. Bioinformatics World, pp16-18.
    • (2002) Bioinformatics World , pp. 16-18
    • Kell1
  • 54
    • 8844219516 scopus 로고    scopus 로고
    • Prediction of phosphorylation sites using SVMs
    • DOI 10.1093/bioinformatics/bth382
    • Kim et al., 2004. Prediction of phosphorylation sites using SVMs. Bioinformatics, 20: 3179-3184. (Pubitemid 39619207)
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3179-3184
    • Kim, J.H.1    Lee, J.2    Oh, B.3    Kimm, K.4    Koh, I.5
  • 57
    • 0035230209 scopus 로고    scopus 로고
    • Reverse engineering of metabolic pathways from observed data using genetic programming
    • Koza et al., 2001. Reverse engineering of metabolic pathways from observed data using genetic programming. Pac. Symp. Biocomp, 2001,434-435.
    • (2001) Pac. Symp. Biocomp , vol.2001 , pp. 434-435
    • Koza1
  • 58
    • 24644487132 scopus 로고    scopus 로고
    • Genetic programming in data mining for drug discovery
    • Ghosh and Jain, eds., Springer
    • Langdon and Barrett, 2004. Genetic programming in data mining for drug discovery. In Ghosh and Jain, eds., Evolutionary Computing in Data Mining, pp211-235. Springer.
    • (2004) Evolutionary Computing in Data Mining , pp. 211-235
    • Langdon1    Barrett2
  • 59
    • 3543137608 scopus 로고    scopus 로고
    • Genetic programming for combining neural networks for drug discovery
    • Roy, et al. eds., Springer. Published 2002
    • Langdon et al., 2001. Genetic programming for combining neural networks for drug discovery. In Roy, et al. eds., Soft Computing and Industry Recent Applications, 597-608. Springer. Published 2002.
    • (2001) Soft Computing and Industry Recent Applications , pp. 597-608
    • Langdon1
  • 60
    • 84943242431 scopus 로고    scopus 로고
    • Combining decision trees and neural networks for drug discovery
    • Foster, et al. eds., EuroGP
    • Langdon et al., 2002. Combining decision trees and neural networks for drug discovery. In Foster, et al. eds., EuroGP, LNCS 2278, 60-70.
    • (2002) LNCS , vol.2278 , pp. 60-70
    • Langdon1
  • 61
    • 0344976353 scopus 로고    scopus 로고
    • Comparison of AdaBoost and genetic programming for combining neural networks for drug discovery
    • Raidl, et al. eds., Applications of Evolutionary Computing
    • Langdon et al., 2003a. Comparison of AdaBoost and genetic programming for combining neural networks for drug discovery. In Raidl, et al. eds., Applications of Evolutionary Computing, LNCS 2611, pp87-98.
    • (2003) LNCS , vol.2611 , pp. 87-98
    • Langdon1
  • 62
    • 84860421682 scopus 로고    scopus 로고
    • Degree prediction of malignancy in brain glioma using support vector machines
    • In Press
    • Li et al., 2005. Degree prediction of malignancy in brain glioma using support vector machines. Computers in Biology and Medicine, In Press.
    • (2005) Computers in Biology and Medicine
    • Li1
  • 63
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • DOI 10.1016/j.ygeno.2004.09.007, PII S088875430400271X
    • Li et al., 2005b. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics, 85(1): 16-23. (Pubitemid 39655687)
    • (2005) Genomics , vol.85 , Issue.1 , pp. 16-23
    • Li, L.1    Jiang, W.2    Li, X.3    Moser, K.L.4    Guo, Z.5    Du, L.6    Wang, Q.7    Topol, E.J.8    Wang, Q.9    Rao, S.10
  • 66
    • 11244255299 scopus 로고    scopus 로고
    • QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diarylimidazoles based on support vector machines
    • DOI 10.1007/s10822-004-2722-1
    • Liu et al., 2004. QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diarylimidazoles based on support vector machines. Journal of Computer-Aided Molecular Design 18(6): 389-399 (Pubitemid 40069137)
    • (2004) Journal of Computer-Aided Molecular Design , vol.18 , Issue.6 , pp. 389-399
    • Liu, H.X.1    Zhang, R.S.2    Yao, X.J.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6
  • 67
    • 21744456214 scopus 로고    scopus 로고
    • Preclinical in vitro screening assays for drug-like properties
    • Liu et al., 2005. Preclinical in vitro screening assays for drug-like properties. Drug Discovery Today: Technologies, 2(2):179-185
    • (2005) Drug Discovery Today: Technologies , vol.2 , Issue.2 , pp. 179-185
    • Liu1
  • 68
    • 2942522879 scopus 로고    scopus 로고
    • QSAR analysis of cyclooxygenase inhibitor using particle swarm optimization and multiple linear regression
    • DOI 10.1016/j.jpba.2004.02.026, PII S0731708504001128
    • Lu et al., 2004. QSAR analysis of cyclooxygenase inhibitor using particle swarm optimization and multiple linear regression. J. Pharm. Biomed. Anal., 35:679-687. (Pubitemid 38757658)
    • (2004) Journal of Pharmaceutical and Biomedical Analysis , vol.35 , Issue.4 , pp. 679-687
    • Lu, J.-X.1    Shen, Q.2    Jiang, J.-H.3    Shen, G.-L.4    Yu, R.-Q.5
  • 70
    • 10044239599 scopus 로고    scopus 로고
    • Ensemble methods for classification in cheminformatics
    • Merkwirth et al., 2004. Ensemble Methods for Classification in Cheminformatics. 1. Chern. Inf. Comput. Sci., 44(6): 1971-1978
    • (2004) J. Chern. Inf. Comput. Sci. , vol.44 , Issue.6 , pp. 1971-1978
    • Merkwirth1
  • 71
    • 0035238879 scopus 로고    scopus 로고
    • A comparison of non-linear non-parametric models for epilepsy data
    • Miwakeichi et al., 2001. A comparison of non-linear non-parametric models for epilepsy data. Computers in Biology and Medicine, 31(1): 41-57
    • (2001) Computers in Biology and Medicine , vol.31 , Issue.1 , pp. 41-57
    • Miwakeichi1
  • 72
    • 26444441442 scopus 로고    scopus 로고
    • An improved grammatical evolution strategy for hierarchical petri net modeling of complex genetic systems
    • Raidl, et al. eds., Applications of Evolutionary Computing
    • Moore and Hahn, 2004. An improved grammatical evolution strategy for hierarchical petri net modeling of complex genetic systems. In Raidl, et al. eds., Applications of Evolutionary Computing, LNCS 3005, pp63-72.
    • (2004) LNCS , vol.3005 , pp. 63-72
    • Moore1    Hahn2
  • 73
    • 0035992220 scopus 로고    scopus 로고
    • Symbolic discriminant analysis of microarray data in autoimmune disease
    • DOI 10.1002/gepi.1117
    • Moore et al., 2002. Symbolic discriminant analysis of microarray data in automimmune disease. Genetic Epidemiology, 23:57-69. (Pubitemid 34743157)
    • (2002) Genetic Epidemiology , vol.23 , Issue.1 , pp. 57-69
    • Moore, J.H.1    Parker, J.S.2    Olsen, N.J.3    Aune, T.M.4
  • 75
    • 11844258149 scopus 로고    scopus 로고
    • Wiley, New Jersey. ISBN: 0-471-60150-0
    • Ng, 2004. Drugs-From Discovery to Approval. Wiley, New Jersey. ISBN: 0-471-60150-0
    • (2004) Drugs-From Discovery to Approval
    • Ng1
  • 76
    • 0037038314 scopus 로고    scopus 로고
    • Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs
    • DOI 10.1021/jm020919o
    • Nicolotti et al., 2002. Multiob jective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. Journal of Medicinal Chemistry, 45(23):5069-5080. (Pubitemid 35278703)
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.23 , pp. 5069-5080
    • Nicolotti, O.1    Gillet, V.J.2    Fleming, P.J.3    Green, D.V.S.4
  • 77
    • 0242320490 scopus 로고    scopus 로고
    • Support vector machine models in drug design: Applications to drug transport processes and QSAR using simplex optimisations and variable selection
    • DOI 10.1016/S0925-2312(03)00374-6
    • Norinder, 2003. Support vector machine models in drug design: applications to drug transport processes and QSAR using simplex optimisations and variable selection. Neurocomputing, 55(1-2): 337-346 (Pubitemid 37336683)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 337-346
    • Norinder, U.1
  • 78
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • DOI 10.1093/bioinformatics/19.1.37
    • Ooi and Tan, 2003. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 19(1):37-44. (Pubitemid 36150179)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 80
    • 0035742528 scopus 로고    scopus 로고
    • Continuing evolution of the drug discovery process in the pharmaceutical industry
    • Ratti and Trist, 2001. Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure Appl. Chern.. 73(1):67-75
    • (2001) Pure Appl. Chern. , vol.73 , Issue.1 , pp. 67-75
    • Ratti1    Trist2
  • 81
    • 12844275916 scopus 로고    scopus 로고
    • Integrated analysis of genetic, genomic and proteomic data
    • DOI 10.1586/14789450.1.1.67
    • Reif et al., 2004. Integrated analysis of genetic, genomic, and proteomic data. Expert Review of Proteomics, 1(1):67-75. (Pubitemid 43826430)
    • (2004) Expert Review of Proteomics , vol.1 , Issue.1 , pp. 67-75
    • Reif, D.M.1    White, B.C.2    Moore, J.H.3
  • 82
    • 0036633359 scopus 로고    scopus 로고
    • Genome-based pharmacogenetics and the pharmaceutical industry
    • Roses, 2002. Genome-based pharmacogenetics and the pharmaceutical industry. Nat. Rev. Drug Discov. 1(7):541-9 (Pubitemid 37361506)
    • (2002) Nature Reviews Drug Discovery , vol.1 , Issue.7 , pp. 541-549
    • Roses, A.D.1
  • 83
    • 24344442704 scopus 로고    scopus 로고
    • Asynchronous parallel evolutionary model selection for support vector machines
    • Runarsson and Sigurdsson, 2004. Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing - Lett. & Reviews, 3(3):59-67
    • (2004) Neural Information Processing - Lett. & Reviews , vol.3 , Issue.3 , pp. 59-67
    • Runarsson1    Sigurdsson2
  • 86
    • 23844449940 scopus 로고    scopus 로고
    • Computer-based de novo design of drug-like molecules
    • DOI 10.1038/nrd1799
    • Schneider & Fechner, 2005. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discovery, 4(8):649-663 (Pubitemid 41149759)
    • (2005) Nature Reviews Drug Discovery , vol.4 , Issue.8 , pp. 649-663
    • Schneider, G.1    Fechner, U.2
  • 87
    • 3042531365 scopus 로고    scopus 로고
    • Proteomics: How to control highly dynamic patterns of millions of molecules ad interpret changes correctly
    • DOI 10.1016/j.ddtec.2004.06.001, PII S1740674904000022
    • Schrattenholz ,2004. Proteomics: how to control highly dynamic patterns of millions of molecules and interpret changes correctly? Drug Discovery Today: Technologies, 1(1): 1-8 (Pubitemid 40197546)
    • (2004) Drug Discovery Today: Technologies , vol.1 , Issue.1 , pp. 1-8
    • Schrattenholz, A.1
  • 91
    • 5444267543 scopus 로고    scopus 로고
    • Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: QSAR studies of bioactivity of organic compounds
    • Shen et al., 2004. Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: QSAR studies of bioactivity of organic compounds. Joumal of Computational Chemistry, 25:1726-1735.
    • (2004) Joumal of Computational Chemistry , vol.25 , pp. 1726-1735
    • Shen1
  • 93
    • 2942753946 scopus 로고    scopus 로고
    • Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data
    • Simek et al., 2004. Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data. Engineering Applications of Artificial Intelligence, 17: 417-427
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 417-427
    • Simek1
  • 94
    • 34547376690 scopus 로고    scopus 로고
    • Variable selection in industrial datasets using pareto genetic programming
    • Yu, et al. eds., Kluwer
    • Smits et al., 2005. Variable selection in industrial datasets using pareto genetic programming. In Yu, et al. eds., Genetic Programming Theory and Practice III. Kluwer.
    • (2005) Genetic Programming Theory and Practice III
    • Smits1
  • 95
    • 13344285267 scopus 로고    scopus 로고
    • Optimization algorithms and natural computing in drug discovery
    • DOI 10.1016/j.ddtec.2004.11.011, PII S1740674904000599
    • Solmajer and Zupan, 2004. Optimisation algorithms and natural computing in drug discovery. Drug Discovery Today: Technologies, 1(3): 247-252 (Pubitemid 40197573)
    • (2004) Drug Discovery Today: Technologies , vol.1 , Issue.3 , pp. 247-252
    • Solmajer, T.1    Zupan, J.2
  • 97
    • 34250646558 scopus 로고    scopus 로고
    • Identification of dopamine Dl receptor agonists and antagonists under existing noise compounds by TFS-based ANN and SVM
    • Takahashi et al., 2005. Identification of Dopamine Dl Receptor Agonists and Antagonists under Existing Noise Compounds by TFS-based ANN and SVM. J. Comput. Chern. Jpn., 4(2): 43-48
    • (2005) J. Comput. Chern. Jpn. , vol.4 , Issue.2 , pp. 43-48
    • Takahashi1
  • 98
    • 0042700257 scopus 로고    scopus 로고
    • Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists' intuition
    • Takaoka et al., 2003. Development of a Method for Evaluating Drug-Likeness and Ease of Synthesis Using a Data Set in Which Compounds Are Assigned Scores Based on Chemists' Intuition. J. Chern. Inf. Comput. Sci., 43(4): 1269-1275.
    • (2003) J. Chern. Inf. Comput. Sci. , vol.43 , Issue.4 , pp. 1269-1275
    • Takaoka1
  • 99
    • 19444386649 scopus 로고    scopus 로고
    • Prediction of siRNA functionality using generalized string kernel and support vector machine
    • DOI 10.1016/j.febslet.2005.04.045, PII S001457930500520X
    • Teramoto et al., 2005. Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett. 579(13):2878-82 (Pubitemid 40725261)
    • (2005) FEBS Letters , vol.579 , Issue.13 , pp. 2878-2882
    • Teramoto, R.1    Aoki, M.2    Kimura, T.3    Kanaoka, M.4
  • 102
    • 13244299124 scopus 로고    scopus 로고
    • Appplying support vector machines for gene ontology based gene function prediction
    • Vinayagam et al., 2004. Appplying support vector machines for gene ontology based gene function prediction. BMC Bioinformatics. 5:116-129
    • (2004) BMC Bioinformatics , vol.5 , pp. 116-129
    • Vinayagam1
  • 103
    • 16344385431 scopus 로고    scopus 로고
    • Evolutionary optimization with data collocation for reverse engineering of biological networks
    • DOI 10.1093/bioinformatics/bti099
    • Tsai and Wang, 2005. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7): 1180-1188. (Pubitemid 40467943)
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1180-1188
    • Tsai, K.-Y.1    Wang, F.-S.2
  • 105
    • 3142674350 scopus 로고    scopus 로고
    • An approach to multimodal biomedical image registration utilizing particle swarm optimization
    • Wachowiak et al., 2004. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans on EC, 8(3):289-301.
    • (2004) IEEE Trans on EC , vol.8 , Issue.3 , pp. 289-301
    • Wachowiak1
  • 108
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • Warmuth et al., 2003. Active Learning with Support Vector Machines in the Drug Discovery Process. 1. Chern. Inf. Comput. Sci., 43(2): 667-673
    • (2003) J. Chern. Inf. Comput. Sci. , vol.43 , Issue.2 , pp. 667-673
    • Warmuth1
  • 109
    • 0036624293 scopus 로고    scopus 로고
    • Metabolomics and biochemical profiling in drug discovery and development
    • Watkins and German, 2002. Metabolomics and biochemical profiling in drug discovery and development. CurroOpin. Mol. Ther., 4(3): 224-8 (Pubitemid 35282867)
    • (2002) Current Opinion in Molecular Therapeutics , vol.4 , Issue.3 , pp. 224-228
    • Watkins, S.M.1    German, J.B.2
  • 111
    • 0038255018 scopus 로고    scopus 로고
    • Chemoinformatics and drug discovery
    • Xu and Hagler 2002. Chemoinformatics and drug discovery. Molecules, 7: 566-600 (Pubitemid 38999114)
    • (2002) Molecules , vol.7 , Issue.8 , pp. 566-600
    • Xu, J.1    Hagler, A.2
  • 112
    • 4043091303 scopus 로고    scopus 로고
    • Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach
    • Xue et al., 2004a. Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach. J. Chern. Inf. Comput. Sci. 44(4): 1497-1505
    • (2004) J. Chern. Inf. Comput. Sci. , vol.44 , Issue.4 , pp. 1497-1505
    • Xue1
  • 113
    • 5444250595 scopus 로고    scopus 로고
    • QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine
    • Xue, et al., 2004b. QSAR Models for the Prediction of Binding Affinities to Human Serum Albumin Using the Heuristic Method and a Support Vector Machine. J. Chern. Inf. Comput. Sci.,44(5): 1693-1700
    • (2004) J. Chern. Inf. Comput. Sci. , vol.44 , Issue.5 , pp. 1693-1700
    • Xue1
  • 114
    • 1842455240 scopus 로고    scopus 로고
    • Bio-support vector machines for computational proteomics
    • DOI 10.1093/bioinformatics/btg477
    • Yang and Chou, 2004. Bio-support vector machines for computational proteomics. Bioinformatics, 20: 735-741. (Pubitemid 38443829)
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 735-741
    • Yang, Z.R.1    Chou, K.-C.2
  • 115
    • 23844460948 scopus 로고    scopus 로고
    • Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines
    • To appear
    • Yap and Chen, 2005. Prediction of Cytochrome P450 3A4, 2D6, and 2C9 Inhibitors and Substrates by Using Support Vector Machines. J. Chern. Inf. Model, To appear.
    • (2005) J. Chern. Inf. Model
    • Yap1    Chen2
  • 116
    • 2442700335 scopus 로고    scopus 로고
    • Prediction of torsade-causing potential of drugs by support vector machine approach
    • DOI 10.1093/toxsci/kfh082
    • Yap et al., 2004. Prediction of Torsade-Causing Potential of Drugs by Support Vector Machine Approach. Toxicol. Sci., 79: 170-177 (Pubitemid 38660260)
    • (2004) Toxicological Sciences , vol.79 , Issue.1 , pp. 170-177
    • Yap, C.W.1    Cai, C.Z.2    Xue, Y.3    Chen, Y.Z.4
  • 117
    • 0038059014 scopus 로고    scopus 로고
    • Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines
    • DOI 10.1515/CCLM.2003.080
    • Yoon et al., 2003. Analysis of Multiple Single Nucleotide Polymorphisms of Candidate Genes Related to Coronary Heart Disease Susceptibility by Using Support Vector Machines. Clinical Chemistry and Laboratory Medicine, 41(4): 529-534. (Pubitemid 36592120)
    • (2003) Clinical Chemistry and Laboratory Medicine , vol.41 , Issue.4 , pp. 529-534
    • Yoon, Y.1    Song, J.2    Hong, S.H.3    Kim, J.Q.4
  • 118
    • 10044235707 scopus 로고    scopus 로고
    • Diagnosing anorexia based on partial least squares, back-propagation neural network, and support vector machines
    • Zhao et al., 2004. Diagnosing anorexia based on partial least squares, back-propagation neural network, and support vector machines. J. Chern. Inf. Sci. 44, 2040-2046.
    • (2004) J. Chern. Inf. Sci. , vol.44 , pp. 2040-2046
    • Zhao1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.