-
1
-
-
0037186503
-
Feature selection for structure-activity correlation using binary particle swarms
-
DOI 10.1021/jm0104668
-
Agrafiotis and Cedeno, 2002. Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45(5): 1098-1107. (Pubitemid 34173920)
-
(2002)
Journal of Medicinal Chemistry
, vol.45
, Issue.5
, pp. 1098-1107
-
-
Agrafiotis, D.K.1
Cedeno, W.2
-
3
-
-
3543106611
-
Classification of gene expression profile using combinatory method of evolutionary computation and machine learning
-
DOI 10.1023/B:GENP.0000023685.83861.69
-
Ando and Iba, 2004. Classification of gene expression profile using combinatory method of evolutionary computation and machine learning. GP&EM, 5(2): 145-156. (Pubitemid 38497846)
-
(2004)
Genetic Programming and Evolvable Machines
, vol.5
, Issue.2
, pp. 145-156
-
-
Ando, S.1
Iba, H.2
-
4
-
-
18144369259
-
Development of CYP3A4 inhibition models: Comparisons of machine-learning techniques and molecular descriptors
-
DOI 10.1177/1087057104274091
-
Arimoto and Gifford, 2005. Development of CYP3A4 Inhibition Models: Comparisons of Machine-Learning Techniques and Molecular Descriptors. Journal of Biomolecular Screening, 10(3):197-205 (Pubitemid 40617157)
-
(2005)
Journal of Biomolecular Screening
, vol.10
, Issue.3
, pp. 197-205
-
-
Arimoto, R.1
Prasad, M.-A.2
Gifford, E.M.3
-
5
-
-
3543145510
-
HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study
-
DOI 10.1016/j.pbiomolbio.2003.09.001, PII S0079610703000804
-
Bains et al., 2004. HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study. Progress in Biophysics and Molecular Biology, 86(2):205-233. (Pubitemid 39027233)
-
(2004)
Progress in Biophysics and Molecular Biology
, vol.86
, Issue.2
, pp. 205-233
-
-
Bains, W.1
Basman, A.2
White, C.3
-
7
-
-
0037134796
-
Identifying genes related to drug anticancer mechanisms using support vector machine
-
DOI 10.1016/S0014-5793(02)02835-1, PII S0014579302028351
-
Bao and Sun, 2002. Identifying genes related to drug anticancer mechanisms using support vector machine. FEBS Lett. 521(1-3):109-14. (Pubitemid 34628469)
-
(2002)
FEBS Letters
, vol.521
, Issue.1-3
, pp. 109-114
-
-
Bao, L.1
Sun, Z.2
-
8
-
-
84860397575
-
INTErSECT "roCKET" : Robust classification and knowledge engineering techniques
-
Presented at, Centre for Advanced Instrumentation Systems, UCL, 16th February 2005
-
Barrett, SJ. (2005) INTErSECT "RoCKET" : Robust Classification and Knowledge Engineering Techniques. Presented at : 'Through Collaboration to Innovation', Centre for Advanced Instrumentation Systems, UCL, 16th February 2005.
-
(2005)
Through Collaboration to Innovation
-
-
Barrett, S.J.1
-
9
-
-
3242892058
-
GPCRpred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors
-
DOI 10.1093/nar/gkh416
-
Bhasin and Raghava, 2004a. GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic acids research, 32:W383-W389 (Pubitemid 38997364)
-
(2004)
Nucleic Acids Research
, vol.32
-
-
Bhasin, M.1
Raghava, G.P.S.2
-
10
-
-
2542458612
-
Classification of nuclear receptors based on amino acid composition and dipeptide composition
-
DOI 10.1074/jbc.M401932200
-
Bhasin and Raghava, 2004b. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J. Biological Chemistry, 279(22):23262-23266 (Pubitemid 38685634)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.22
, pp. 23262-23266
-
-
Bhasin, M.1
Raghava, G.P.S.2
-
12
-
-
0037249217
-
Whole-proteome interaction mining
-
DOI 10.1093/bioinformatics/19.1.125
-
Bock and Gough, 2003. Whole-proteome interaction mining. Bioinformatics, 19 (1), 125-135. (Pubitemid 36150189)
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 125-135
-
-
Bock, J.R.1
Gough, D.A.2
-
13
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
COLT, 1992
-
Boser et al., 1992. A training algorithm for optimal margin classifiers. 5th Annual ACM Workshop, COLT, 1992
-
(1992)
5th Annual ACM Workshop
-
-
Boser1
-
14
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
Breiman, 2001. Random forests. Machine Learning, 45:5-32 (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
15
-
-
84860397574
-
Caco-2 permeability modeling: Feature selection via sparse support vector machines
-
Presented at the, April 2002
-
Breneman 2002. Caco-2 Permeability Modeling: Feature Selection via Sparse Support Vector Machines.Presented at the ADMEffox symposium at the Orlando ACS meeting, April 2002.
-
(2002)
ADMEffox Symposium at the Orlando ACS Meeting
-
-
Breneman1
-
16
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
DOI 10.1073/pnas.97.1.262
-
Brown et al., 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl, Acad. Sci., USA 97:262-267 (Pubitemid 30055819)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares Jr., M.7
Haussler, D.8
-
17
-
-
84860421678
-
STAR Sparsity through automated rejection
-
Connectionist Models of Neurons, Learning Processes, Proceedings, Part 1 2084; Mira, 1.; Prieto, A., Eds.; Springer: Granada, Spain
-
Burbidge et al., 2001a. STAR Sparsity Through Automated Rejection. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence: 6th International Work Conference On Artificial and Natural Neural Networks, IWANN 2001, Proceedings, Part 1, Vol. 2084; Mira, 1.; Prieto, A., Eds.; Springer: Granada, Spain, 2001.
-
(2001)
Artificial Intelligence 6th International Work Conference on Artificial and Natural Neural Networks, IWANN 2001
, pp. 2001
-
-
Burbidge1
-
18
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge et al., 2001b. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers in chemistry, 26(1):4-15
-
(2001)
Computers in Chemistry
, vol.26
, Issue.1
, pp. 4-15
-
-
Burbidge1
-
19
-
-
0036884167
-
The use and analysis of microarray data
-
DOI 10.1038/nrd961
-
Butte, 2002. The use and analysis of microarray data. Nat. Rev. Drug Discov. 1(12):951-60 (Pubitemid 37361601)
-
(2002)
Nature Reviews Drug Discovery
, vol.1
, Issue.12
, pp. 951-960
-
-
Butte, A.1
-
20
-
-
2942702317
-
SVM-based feature selection for characterization of focused compound collections
-
Byvatov, and Schneider, 2004. SVM-Based Feature Selection for Characterization of Focused Compound Collections. J. Chern. Inf. Comput. Sci., 44(3): 993-999
-
(2004)
J. Chern. Inf. Comput. Sci.
, vol.44
, Issue.3
, pp. 993-999
-
-
Byvatov1
Schneider2
-
21
-
-
20444502203
-
3 dopamine receptor ligands
-
DOI 10.1002/cbic.200400400
-
Byvatov et al., 2005a. From Virtual to Real Screening for D3 Dopamine Receptor Ligands. ChemBioChem, 6(6):997-999 (Pubitemid 40825338)
-
(2005)
ChemBioChem
, vol.6
, Issue.6
, pp. 997-999
-
-
Byvatov, E.1
Sasse, B.C.2
Stark, H.3
Schneider, G.4
-
22
-
-
0042856574
-
Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression
-
DOI 10.1023/A:1025338411016
-
Cedeno and Agrafiotis, 2003. Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. J.Comput.-Aided Mol. Des.,17:255-263. (Pubitemid 37062786)
-
(2003)
Journal of Computer-Aided Molecular Design
, vol.17
, Issue.2-4
, pp. 255-263
-
-
Cedeno, W.1
Agrafiotis, D.K.2
-
24
-
-
8844238362
-
Insight into the Bioactivity and Metabolism of Human Glucagon Receptor Antagonists from 3D-QSAR Analyses
-
Cheng et al., 2004. Insight into the Bioactivity and Metabolism of Human Glucagon Receptor Antagonists from 3D-QSAR Analyses. QSAR & Combinatorial Science, 23(8): 603-620
-
(2004)
QSAR & Combinatorial Science
, vol.23
, Issue.8
, pp. 603-620
-
-
Cheng1
-
27
-
-
0037255041
-
Evolutionary algorithms for finding optimal gene sets in microarray prediction
-
DOI 10.1093/bioinformatics/19.1.45
-
Deutsch, 2003. Evolutionary algorithms for finding optimal gene sets in micro array prediction. Bioinformatics, 19(1):45-52. (Pubitemid 36157275)
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 45-52
-
-
Deutsch, J.M.1
-
28
-
-
9644283060
-
Predicting enzyme class from protein structure without alignments
-
DOI 10.1016/j.jmb.2004.10.024, PII S0022283604013166
-
Dobson & Doig 2005.Predicting enzyme class from protein structure without alignments. J.Mol.Biol. ,345:187-199 (Pubitemid 39572835)
-
(2005)
Journal of Molecular Biology
, vol.345
, Issue.1
, pp. 187-199
-
-
Dobson, P.D.1
Doig, A.J.2
-
29
-
-
12244271454
-
Predicting CNS permeability of drug molecules: Comparison of neural network and support vector machine algorithms
-
DOI 10.1089/10665270260518317
-
Doniger et al., 2002. Predicting CNS Permeability of Drug Molecules: Comparison of Neural Network and Support Vector Machine Algorithms. J. of Computational Biol., 9(6): 849-864 (Pubitemid 36207918)
-
(2002)
Journal of Computational Biology
, vol.9
, Issue.6
, pp. 849-864
-
-
Doniger, S.1
Hofmann, T.2
Yeh, J.3
-
30
-
-
15244358006
-
Support vector machines for learning to identify the critical positions of a protein
-
DOI 10.1016/j.jtbi.2004.11.037
-
Dubey et al., 2005. Support vector machines for learning to identify the critical positions of a protein. Journal of Theoretical Biology, 234(3):351-361 (Pubitemid 40387460)
-
(2005)
Journal of Theoretical Biology
, vol.234
, Issue.3
, pp. 351-361
-
-
Dubey, A.1
Realff, M.J.2
Lee, J.H.3
Bommarius, A.S.4
-
34
-
-
11144286011
-
Selecting differentially expressed genes for colon tumor classification
-
Fujarewicz and Wiench, 2003. Selecting differentially expressed genes for colon tumor classification. Int. J. Appl. Math. Comput. Sci., 13(3):327-335
-
(2003)
Int. J. Appl. Math. Comput. Sci.
, vol.13
, Issue.3
, pp. 327-335
-
-
Fujarewicz1
Wiench2
-
35
-
-
3543109140
-
A feature selection newton method for support vector machine classification
-
Fung and Mangasarian, 2004. A Feature Selection Newton Method for Support Vector Machine Classification. Computational Optimization and Applications 28(2):185-202
-
(2004)
Computational Optimization and Applications
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung1
Mangasarian2
-
36
-
-
2942602999
-
Entropy-based gene ranking without selection bias for the predictive classification of microarray data
-
Furlanello et al., 2003. Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics, 4:54-74.
-
(2003)
BMC Bioinformatics
, vol.4
, pp. 54-74
-
-
Furlanello1
-
37
-
-
17644419938
-
A novel statistical ligand-binding site predictor: Application to ATP-binding sites
-
DOI 10.1093/protein/gzi006
-
Guo et al., 2005. A novel statistical ligand-binding site predictor: application to ATP-binding sites. Protein Engng., Design & Selection, 18(2):65-70 (Pubitemid 40562554)
-
(2005)
Protein Engineering, Design and Selection
, vol.18
, Issue.2
, pp. 65-70
-
-
Guo, T.1
Shi, Y.2
Sun, Z.3
-
38
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
Guyon et al., 2002. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389-422 (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
39
-
-
0002415606
-
Statistics and data mining: Intersecting disciplines
-
Hand, 1999. Statistics and data mining: intersecting disciplines.SIGKDD Explorations, 1: 16-19
-
(1999)
SIGKDD Explorations
, vol.1
, pp. 16-19
-
-
Hand1
-
40
-
-
84860401361
-
-
Talk at Universite Rene Descartes UFR Biomedicale, Paris
-
Hardle and Moro, 2004. Survival Analysis with Support vector Machines. Talk at Universite Rene Descartes UFR Biomedicale, Paris http://appel.rz.hu- berlin.de/Zope/ise-stat/wiwi/ise/stat/personen/wh/talks/hae-mor-SVM- %20survival040324.pdf
-
(2004)
Survival Analysis with Support Vector Machines
-
-
Hardle1
Moro2
-
41
-
-
35048847106
-
Evolving regular expression-based sequence classifiers for protein nuclear localisation
-
Raidl et al.eds., LNCS
-
Heddad et al., 2004. Evolving regular expression-based sequence classifiers for protein nuclear localisation.In: Raidl, et al.eds.,Applications of Evolutionary Computing,LNCS 3005, 31-40
-
(2004)
Applications of Evolutionary Computing
, vol.3005
, pp. 31-40
-
-
Heddad1
-
42
-
-
26944491706
-
-
Keijzer, et al. eds., EuroGP, LNCS
-
Hong and Cho, 2004. Lymphoma cancer classification using genetic programming with SNR features. In Keijzer, et al. eds., EuroGP, LNCS 3003, 78-88.
-
(2004)
Lymphoma Cancer Classification Using Genetic Programming with SNR Features
, vol.3003
, pp. 78-88
-
-
Hong1
Cho2
-
43
-
-
1642350394
-
Recent development and application of virtual screening in drug discovery: An overview
-
DOI 10.2174/1381612043452721
-
Hou and Xu, 2004. Recent development and application of virtual screening in drug discovery: an overview. Current Pharmaceutical Design, 10: 1011-1033 (Pubitemid 38380079)
-
(2004)
Current Pharmaceutical Design
, vol.10
, Issue.9
, pp. 1011-1033
-
-
Hou, T.1
Xu, X.2
-
44
-
-
0345724915
-
Evolutionary computation method for pattern recognition of cis-acting sites
-
DOI 10.1016/S0303-2647(03)00132-1
-
Howard and Benson, 2003. Evolutionary computation method for pattern recognition of cisacting sites. Biosystems, 72(1-2):19-27. (Pubitemid 37464787)
-
(2003)
BioSystems
, vol.72
, Issue.1-2
, pp. 19-27
-
-
Howard, D.1
Benson, K.2
-
45
-
-
29144521785
-
The genetic kernel support vector machine: Description and evaluation
-
to appear
-
Howley and Madden, 2005. The Genetic Kernel Support Vector Machine: Description and Evaluation". Artificial Intelligence Review, to appear.
-
(2005)
Artificial Intelligence Review
-
-
Howley1
Madden2
-
46
-
-
18044391075
-
Support vector machines in sonography: Application to decision making in the diagnosis of breast cancer
-
DOI 10.1016/j.clinimag.2004.08.002
-
Huang and Chen, 2005. Support vector machines in sonography: Application to decision making in the diagnosis of breast cancer. Clinical Imaging, 29(3):179-184 (Pubitemid 40602801)
-
(2005)
Clinical Imaging
, vol.29
, Issue.3
, pp. 179-184
-
-
Huang, Y.-L.1
Chen, D.-R.2
-
47
-
-
24344435631
-
Multi-objective model selection for support vector machines
-
Evolutionary Multi-Criterion Optimization - Third International Conference, EMO 2005
-
Igel, 2005. Multiobjective Model Selection for Support Vector Machines. In C. A. Coello Coello, E. Zitzler, and A. Hernandez Aguirre, editors, Proc. of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS 3410: 534-546 (Pubitemid 41251788)
-
(2005)
Lecture Notes in Computer Science
, vol.3410
, pp. 534-546
-
-
Igel, C.1
-
48
-
-
17044407594
-
Support vector machines committee classification method for computeraided polyp detection in CT colonography
-
Jerebko, et al., 2005. Support vector machines committee classification method for computeraided polyp detection in CT colonography. Acad. Radiol., 12(4): 479-486.
-
(2005)
Acad. Radiol.
, vol.12
, Issue.4
, pp. 479-486
-
-
Jerebko1
-
52
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
DOI 10.1021/ci049641u
-
Jorissen and Gilson, 2005. Virtual Screening of Molecular Databases Using a Support Vector Machine. J. Chern. Inf. Model, 45(3): 549-561 (Pubitemid 40795161)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.3
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
53
-
-
0002159118
-
Defence against the flood
-
Kell, 2002. Defence against the flood. Bioinformatics World, pp16-18.
-
(2002)
Bioinformatics World
, pp. 16-18
-
-
Kell1
-
54
-
-
8844219516
-
Prediction of phosphorylation sites using SVMs
-
DOI 10.1093/bioinformatics/bth382
-
Kim et al., 2004. Prediction of phosphorylation sites using SVMs. Bioinformatics, 20: 3179-3184. (Pubitemid 39619207)
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3179-3184
-
-
Kim, J.H.1
Lee, J.2
Oh, B.3
Kimm, K.4
Koh, I.5
-
57
-
-
0035230209
-
Reverse engineering of metabolic pathways from observed data using genetic programming
-
Koza et al., 2001. Reverse engineering of metabolic pathways from observed data using genetic programming. Pac. Symp. Biocomp, 2001,434-435.
-
(2001)
Pac. Symp. Biocomp
, vol.2001
, pp. 434-435
-
-
Koza1
-
58
-
-
24644487132
-
Genetic programming in data mining for drug discovery
-
Ghosh and Jain, eds., Springer
-
Langdon and Barrett, 2004. Genetic programming in data mining for drug discovery. In Ghosh and Jain, eds., Evolutionary Computing in Data Mining, pp211-235. Springer.
-
(2004)
Evolutionary Computing in Data Mining
, pp. 211-235
-
-
Langdon1
Barrett2
-
59
-
-
3543137608
-
Genetic programming for combining neural networks for drug discovery
-
Roy, et al. eds., Springer. Published 2002
-
Langdon et al., 2001. Genetic programming for combining neural networks for drug discovery. In Roy, et al. eds., Soft Computing and Industry Recent Applications, 597-608. Springer. Published 2002.
-
(2001)
Soft Computing and Industry Recent Applications
, pp. 597-608
-
-
Langdon1
-
60
-
-
84943242431
-
Combining decision trees and neural networks for drug discovery
-
Foster, et al. eds., EuroGP
-
Langdon et al., 2002. Combining decision trees and neural networks for drug discovery. In Foster, et al. eds., EuroGP, LNCS 2278, 60-70.
-
(2002)
LNCS
, vol.2278
, pp. 60-70
-
-
Langdon1
-
61
-
-
0344976353
-
Comparison of AdaBoost and genetic programming for combining neural networks for drug discovery
-
Raidl, et al. eds., Applications of Evolutionary Computing
-
Langdon et al., 2003a. Comparison of AdaBoost and genetic programming for combining neural networks for drug discovery. In Raidl, et al. eds., Applications of Evolutionary Computing, LNCS 2611, pp87-98.
-
(2003)
LNCS
, vol.2611
, pp. 87-98
-
-
Langdon1
-
62
-
-
84860421682
-
Degree prediction of malignancy in brain glioma using support vector machines
-
In Press
-
Li et al., 2005. Degree prediction of malignancy in brain glioma using support vector machines. Computers in Biology and Medicine, In Press.
-
(2005)
Computers in Biology and Medicine
-
-
Li1
-
63
-
-
20844445085
-
A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
-
DOI 10.1016/j.ygeno.2004.09.007, PII S088875430400271X
-
Li et al., 2005b. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics, 85(1): 16-23. (Pubitemid 39655687)
-
(2005)
Genomics
, vol.85
, Issue.1
, pp. 16-23
-
-
Li, L.1
Jiang, W.2
Li, X.3
Moser, K.L.4
Guo, Z.5
Du, L.6
Wang, Q.7
Topol, E.J.8
Wang, Q.9
Rao, S.10
-
64
-
-
20444363099
-
Piecewise hypersphere modeling by particle swarm optimization in QSAR studies of bioactivities of chemical compounds
-
DOI 10.1021/ci049642m
-
Lin et al., 2005. Piecewise hypersphere modeling by particle swarm optimization in QSAR studies of bioactivities of chemical compounds. J. Chern. Inf. Model., 45(3):535-541. (Pubitemid 40795159)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.3
, pp. 535-541
-
-
Lin, W.-Q.1
Jiang, J.-H.2
Shen, Q.3
Wu, H.-L.4
Shen, G.-L.5
Yu, R.-Q.6
-
65
-
-
11144355509
-
Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms
-
DOI 10.1158/1078-0432.CCR-1115-03
-
Listgarten et al., 2004. Predictive Models for Breast Cancer Susceptibility from Multiple Single Nucleotide Polymorphisms. Clin. Cancer Res., 10: 2725-2737 (Pubitemid 38509148)
-
(2004)
Clinical Cancer Research
, vol.10
, Issue.8
, pp. 2725-2737
-
-
Listgarten, J.1
Damaraju, S.2
Poulin, B.3
Cook, L.4
Dufour, J.5
Driga, A.6
Mackey, J.7
Wishart, D.8
Greiner, R.9
Zanke, B.10
-
66
-
-
11244255299
-
QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diarylimidazoles based on support vector machines
-
DOI 10.1007/s10822-004-2722-1
-
Liu et al., 2004. QSAR and classification models of a novel series of COX-2 selective inhibitors: 1, 5-diarylimidazoles based on support vector machines. Journal of Computer-Aided Molecular Design 18(6): 389-399 (Pubitemid 40069137)
-
(2004)
Journal of Computer-Aided Molecular Design
, vol.18
, Issue.6
, pp. 389-399
-
-
Liu, H.X.1
Zhang, R.S.2
Yao, X.J.3
Liu, M.C.4
Hu, Z.D.5
Fan, B.T.6
-
67
-
-
21744456214
-
Preclinical in vitro screening assays for drug-like properties
-
Liu et al., 2005. Preclinical in vitro screening assays for drug-like properties. Drug Discovery Today: Technologies, 2(2):179-185
-
(2005)
Drug Discovery Today: Technologies
, vol.2
, Issue.2
, pp. 179-185
-
-
Liu1
-
68
-
-
2942522879
-
QSAR analysis of cyclooxygenase inhibitor using particle swarm optimization and multiple linear regression
-
DOI 10.1016/j.jpba.2004.02.026, PII S0731708504001128
-
Lu et al., 2004. QSAR analysis of cyclooxygenase inhibitor using particle swarm optimization and multiple linear regression. J. Pharm. Biomed. Anal., 35:679-687. (Pubitemid 38757658)
-
(2004)
Journal of Pharmaceutical and Biomedical Analysis
, vol.35
, Issue.4
, pp. 679-687
-
-
Lu, J.-X.1
Shen, Q.2
Jiang, J.-H.3
Shen, G.-L.4
Yu, R.-Q.5
-
70
-
-
10044239599
-
Ensemble methods for classification in cheminformatics
-
Merkwirth et al., 2004. Ensemble Methods for Classification in Cheminformatics. 1. Chern. Inf. Comput. Sci., 44(6): 1971-1978
-
(2004)
J. Chern. Inf. Comput. Sci.
, vol.44
, Issue.6
, pp. 1971-1978
-
-
Merkwirth1
-
71
-
-
0035238879
-
A comparison of non-linear non-parametric models for epilepsy data
-
Miwakeichi et al., 2001. A comparison of non-linear non-parametric models for epilepsy data. Computers in Biology and Medicine, 31(1): 41-57
-
(2001)
Computers in Biology and Medicine
, vol.31
, Issue.1
, pp. 41-57
-
-
Miwakeichi1
-
72
-
-
26444441442
-
An improved grammatical evolution strategy for hierarchical petri net modeling of complex genetic systems
-
Raidl, et al. eds., Applications of Evolutionary Computing
-
Moore and Hahn, 2004. An improved grammatical evolution strategy for hierarchical petri net modeling of complex genetic systems. In Raidl, et al. eds., Applications of Evolutionary Computing, LNCS 3005, pp63-72.
-
(2004)
LNCS
, vol.3005
, pp. 63-72
-
-
Moore1
Hahn2
-
73
-
-
0035992220
-
Symbolic discriminant analysis of microarray data in autoimmune disease
-
DOI 10.1002/gepi.1117
-
Moore et al., 2002. Symbolic discriminant analysis of microarray data in automimmune disease. Genetic Epidemiology, 23:57-69. (Pubitemid 34743157)
-
(2002)
Genetic Epidemiology
, vol.23
, Issue.1
, pp. 57-69
-
-
Moore, J.H.1
Parker, J.S.2
Olsen, N.J.3
Aune, T.M.4
-
75
-
-
11844258149
-
-
Wiley, New Jersey. ISBN: 0-471-60150-0
-
Ng, 2004. Drugs-From Discovery to Approval. Wiley, New Jersey. ISBN: 0-471-60150-0
-
(2004)
Drugs-From Discovery to Approval
-
-
Ng1
-
76
-
-
0037038314
-
Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs
-
DOI 10.1021/jm020919o
-
Nicolotti et al., 2002. Multiob jective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. Journal of Medicinal Chemistry, 45(23):5069-5080. (Pubitemid 35278703)
-
(2002)
Journal of Medicinal Chemistry
, vol.45
, Issue.23
, pp. 5069-5080
-
-
Nicolotti, O.1
Gillet, V.J.2
Fleming, P.J.3
Green, D.V.S.4
-
77
-
-
0242320490
-
Support vector machine models in drug design: Applications to drug transport processes and QSAR using simplex optimisations and variable selection
-
DOI 10.1016/S0925-2312(03)00374-6
-
Norinder, 2003. Support vector machine models in drug design: applications to drug transport processes and QSAR using simplex optimisations and variable selection. Neurocomputing, 55(1-2): 337-346 (Pubitemid 37336683)
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 337-346
-
-
Norinder, U.1
-
78
-
-
0037245772
-
Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
-
DOI 10.1093/bioinformatics/19.1.37
-
Ooi and Tan, 2003. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics, 19(1):37-44. (Pubitemid 36150179)
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 37-44
-
-
Ooi, C.H.1
Tan, P.2
-
80
-
-
0035742528
-
Continuing evolution of the drug discovery process in the pharmaceutical industry
-
Ratti and Trist, 2001. Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure Appl. Chern.. 73(1):67-75
-
(2001)
Pure Appl. Chern.
, vol.73
, Issue.1
, pp. 67-75
-
-
Ratti1
Trist2
-
81
-
-
12844275916
-
Integrated analysis of genetic, genomic and proteomic data
-
DOI 10.1586/14789450.1.1.67
-
Reif et al., 2004. Integrated analysis of genetic, genomic, and proteomic data. Expert Review of Proteomics, 1(1):67-75. (Pubitemid 43826430)
-
(2004)
Expert Review of Proteomics
, vol.1
, Issue.1
, pp. 67-75
-
-
Reif, D.M.1
White, B.C.2
Moore, J.H.3
-
82
-
-
0036633359
-
Genome-based pharmacogenetics and the pharmaceutical industry
-
Roses, 2002. Genome-based pharmacogenetics and the pharmaceutical industry. Nat. Rev. Drug Discov. 1(7):541-9 (Pubitemid 37361506)
-
(2002)
Nature Reviews Drug Discovery
, vol.1
, Issue.7
, pp. 541-549
-
-
Roses, A.D.1
-
83
-
-
24344442704
-
Asynchronous parallel evolutionary model selection for support vector machines
-
Runarsson and Sigurdsson, 2004. Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing - Lett. & Reviews, 3(3):59-67
-
(2004)
Neural Information Processing - Lett. & Reviews
, vol.3
, Issue.3
, pp. 59-67
-
-
Runarsson1
Sigurdsson2
-
86
-
-
23844449940
-
Computer-based de novo design of drug-like molecules
-
DOI 10.1038/nrd1799
-
Schneider & Fechner, 2005. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discovery, 4(8):649-663 (Pubitemid 41149759)
-
(2005)
Nature Reviews Drug Discovery
, vol.4
, Issue.8
, pp. 649-663
-
-
Schneider, G.1
Fechner, U.2
-
87
-
-
3042531365
-
Proteomics: How to control highly dynamic patterns of millions of molecules ad interpret changes correctly
-
DOI 10.1016/j.ddtec.2004.06.001, PII S1740674904000022
-
Schrattenholz ,2004. Proteomics: how to control highly dynamic patterns of millions of molecules and interpret changes correctly? Drug Discovery Today: Technologies, 1(1): 1-8 (Pubitemid 40197546)
-
(2004)
Drug Discovery Today: Technologies
, vol.1
, Issue.1
, pp. 1-8
-
-
Schrattenholz, A.1
-
89
-
-
4444226797
-
Proteomic signature of human cancer cells
-
DOI 10.1002/pmic.200300795
-
Seike, et al., 2004. Proteomic signature of human cancer cells. Proteomics, 4(9): 2776-2788 (Pubitemid 39202177)
-
(2004)
Proteomics
, vol.4
, Issue.9
, pp. 2776-2788
-
-
Seike, M.1
Kondo, T.2
Fujii, K.3
Yamada, T.4
Gemma, A.5
Kudoh, S.6
Hirohashi, S.7
-
91
-
-
5444267543
-
Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: QSAR studies of bioactivity of organic compounds
-
Shen et al., 2004. Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: QSAR studies of bioactivity of organic compounds. Joumal of Computational Chemistry, 25:1726-1735.
-
(2004)
Joumal of Computational Chemistry
, vol.25
, pp. 1726-1735
-
-
Shen1
-
93
-
-
2942753946
-
Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data
-
Simek et al., 2004. Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data. Engineering Applications of Artificial Intelligence, 17: 417-427
-
(2004)
Engineering Applications of Artificial Intelligence
, vol.17
, pp. 417-427
-
-
Simek1
-
94
-
-
34547376690
-
Variable selection in industrial datasets using pareto genetic programming
-
Yu, et al. eds., Kluwer
-
Smits et al., 2005. Variable selection in industrial datasets using pareto genetic programming. In Yu, et al. eds., Genetic Programming Theory and Practice III. Kluwer.
-
(2005)
Genetic Programming Theory and Practice III
-
-
Smits1
-
95
-
-
13344285267
-
Optimization algorithms and natural computing in drug discovery
-
DOI 10.1016/j.ddtec.2004.11.011, PII S1740674904000599
-
Solmajer and Zupan, 2004. Optimisation algorithms and natural computing in drug discovery. Drug Discovery Today: Technologies, 1(3): 247-252 (Pubitemid 40197573)
-
(2004)
Drug Discovery Today: Technologies
, vol.1
, Issue.3
, pp. 247-252
-
-
Solmajer, T.1
Zupan, J.2
-
97
-
-
34250646558
-
Identification of dopamine Dl receptor agonists and antagonists under existing noise compounds by TFS-based ANN and SVM
-
Takahashi et al., 2005. Identification of Dopamine Dl Receptor Agonists and Antagonists under Existing Noise Compounds by TFS-based ANN and SVM. J. Comput. Chern. Jpn., 4(2): 43-48
-
(2005)
J. Comput. Chern. Jpn.
, vol.4
, Issue.2
, pp. 43-48
-
-
Takahashi1
-
98
-
-
0042700257
-
Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists' intuition
-
Takaoka et al., 2003. Development of a Method for Evaluating Drug-Likeness and Ease of Synthesis Using a Data Set in Which Compounds Are Assigned Scores Based on Chemists' Intuition. J. Chern. Inf. Comput. Sci., 43(4): 1269-1275.
-
(2003)
J. Chern. Inf. Comput. Sci.
, vol.43
, Issue.4
, pp. 1269-1275
-
-
Takaoka1
-
99
-
-
19444386649
-
Prediction of siRNA functionality using generalized string kernel and support vector machine
-
DOI 10.1016/j.febslet.2005.04.045, PII S001457930500520X
-
Teramoto et al., 2005. Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett. 579(13):2878-82 (Pubitemid 40725261)
-
(2005)
FEBS Letters
, vol.579
, Issue.13
, pp. 2878-2882
-
-
Teramoto, R.1
Aoki, M.2
Kimura, T.3
Kanaoka, M.4
-
100
-
-
20944440313
-
Prediction of nephrotoxicant action and identification of candidate toxicity-related biomarkers
-
DOI 10.1080/01926230590927230
-
Thukral et al., 2005. Prediction of Nephrotoxicant Action and Identification of Candidate Toxicity-Related Biomarkers. Toxicologic Pathology, 33(3): 343-355 (Pubitemid 40617138)
-
(2005)
Toxicologic Pathology
, vol.33
, Issue.3
, pp. 343-355
-
-
Thukral, S.K.1
Nordone, P.J.2
Hu, R.3
Sullivan, L.4
Galambos, E.5
Fitzpatrick, V.D.6
Healy, L.7
Bass, M.B.8
Cosenza, M.E.9
Afshari, C.A.10
-
102
-
-
13244299124
-
Appplying support vector machines for gene ontology based gene function prediction
-
Vinayagam et al., 2004. Appplying support vector machines for gene ontology based gene function prediction. BMC Bioinformatics. 5:116-129
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 116-129
-
-
Vinayagam1
-
103
-
-
16344385431
-
Evolutionary optimization with data collocation for reverse engineering of biological networks
-
DOI 10.1093/bioinformatics/bti099
-
Tsai and Wang, 2005. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7): 1180-1188. (Pubitemid 40467943)
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1180-1188
-
-
Tsai, K.-Y.1
Wang, F.-S.2
-
105
-
-
3142674350
-
An approach to multimodal biomedical image registration utilizing particle swarm optimization
-
Wachowiak et al., 2004. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans on EC, 8(3):289-301.
-
(2004)
IEEE Trans on EC
, vol.8
, Issue.3
, pp. 289-301
-
-
Wachowiak1
-
107
-
-
12444320350
-
Gene selection from microarray data for cancer classification - A machine learning approach
-
DOI 10.1016/j.compbiolchem.2004.11.001, PII S1476927104001082
-
Wang et al., 2005. Gene selection from microarray data for cancer classification - a machine learning approach. Computational Biology and Chemistry, 29(1): 37-46 (Pubitemid 40146365)
-
(2005)
Computational Biology and Chemistry
, vol.29
, Issue.1
, pp. 37-46
-
-
Wang, Y.1
Tetko, I.V.2
Hall, M.A.3
Frank, E.4
Facius, A.5
Mayer, K.F.X.6
Mewes, H.W.7
-
108
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth et al., 2003. Active Learning with Support Vector Machines in the Drug Discovery Process. 1. Chern. Inf. Comput. Sci., 43(2): 667-673
-
(2003)
J. Chern. Inf. Comput. Sci.
, vol.43
, Issue.2
, pp. 667-673
-
-
Warmuth1
-
109
-
-
0036624293
-
Metabolomics and biochemical profiling in drug discovery and development
-
Watkins and German, 2002. Metabolomics and biochemical profiling in drug discovery and development. CurroOpin. Mol. Ther., 4(3): 224-8 (Pubitemid 35282867)
-
(2002)
Current Opinion in Molecular Therapeutics
, vol.4
, Issue.3
, pp. 224-228
-
-
Watkins, S.M.1
German, J.B.2
-
111
-
-
0038255018
-
Chemoinformatics and drug discovery
-
Xu and Hagler 2002. Chemoinformatics and drug discovery. Molecules, 7: 566-600 (Pubitemid 38999114)
-
(2002)
Molecules
, vol.7
, Issue.8
, pp. 566-600
-
-
Xu, J.1
Hagler, A.2
-
112
-
-
4043091303
-
Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach
-
Xue et al., 2004a. Prediction of P-Glycoprotein Substrates by a Support Vector Machine Approach. J. Chern. Inf. Comput. Sci. 44(4): 1497-1505
-
(2004)
J. Chern. Inf. Comput. Sci.
, vol.44
, Issue.4
, pp. 1497-1505
-
-
Xue1
-
113
-
-
5444250595
-
QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine
-
Xue, et al., 2004b. QSAR Models for the Prediction of Binding Affinities to Human Serum Albumin Using the Heuristic Method and a Support Vector Machine. J. Chern. Inf. Comput. Sci.,44(5): 1693-1700
-
(2004)
J. Chern. Inf. Comput. Sci.
, vol.44
, Issue.5
, pp. 1693-1700
-
-
Xue1
-
114
-
-
1842455240
-
Bio-support vector machines for computational proteomics
-
DOI 10.1093/bioinformatics/btg477
-
Yang and Chou, 2004. Bio-support vector machines for computational proteomics. Bioinformatics, 20: 735-741. (Pubitemid 38443829)
-
(2004)
Bioinformatics
, vol.20
, Issue.5
, pp. 735-741
-
-
Yang, Z.R.1
Chou, K.-C.2
-
115
-
-
23844460948
-
Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines
-
To appear
-
Yap and Chen, 2005. Prediction of Cytochrome P450 3A4, 2D6, and 2C9 Inhibitors and Substrates by Using Support Vector Machines. J. Chern. Inf. Model, To appear.
-
(2005)
J. Chern. Inf. Model
-
-
Yap1
Chen2
-
116
-
-
2442700335
-
Prediction of torsade-causing potential of drugs by support vector machine approach
-
DOI 10.1093/toxsci/kfh082
-
Yap et al., 2004. Prediction of Torsade-Causing Potential of Drugs by Support Vector Machine Approach. Toxicol. Sci., 79: 170-177 (Pubitemid 38660260)
-
(2004)
Toxicological Sciences
, vol.79
, Issue.1
, pp. 170-177
-
-
Yap, C.W.1
Cai, C.Z.2
Xue, Y.3
Chen, Y.Z.4
-
117
-
-
0038059014
-
Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines
-
DOI 10.1515/CCLM.2003.080
-
Yoon et al., 2003. Analysis of Multiple Single Nucleotide Polymorphisms of Candidate Genes Related to Coronary Heart Disease Susceptibility by Using Support Vector Machines. Clinical Chemistry and Laboratory Medicine, 41(4): 529-534. (Pubitemid 36592120)
-
(2003)
Clinical Chemistry and Laboratory Medicine
, vol.41
, Issue.4
, pp. 529-534
-
-
Yoon, Y.1
Song, J.2
Hong, S.H.3
Kim, J.Q.4
-
118
-
-
10044235707
-
Diagnosing anorexia based on partial least squares, back-propagation neural network, and support vector machines
-
Zhao et al., 2004. Diagnosing anorexia based on partial least squares, back-propagation neural network, and support vector machines. J. Chern. Inf. Sci. 44, 2040-2046.
-
(2004)
J. Chern. Inf. Sci.
, vol.44
, pp. 2040-2046
-
-
Zhao1
|